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Abstract

Swarming is a near-universal phenomenon in nature. Many mathe-
matical models of swarms exist, both to model natural processes and to
control robotic agents. We study a swarm of agents with spring-like at-
traction and nonlinear self-propulsion. Swarms of this type have been
studied numerically, but to our knowledge, no proofs of stability yet exist.
We are motivated by a desire to understand the system from a mathemat-
ical point of view. Previous numerical experiments have shown that the
system either converges to a rotating circular limit cycle with a fixed cen-
ter of mass, or the agents clump together and move along a straight line.
We show that this is not always the case, and the behavior is sometimes
more nuanced. Our specific goal is to investigate stability of the system’s
circular rotating state. The system is translation-invariant, and when the
center of mass comes to a halt, the agents decouple from each other.

We apply methods from the stability theory of dynamical systems, in-
cluding Liénard’s Theorem, Lasalle’s Invariance Principle, and Lyapunov’s
direct and indirect methods, to globally characterize the behavior of these
decoupled systems, and to locally characterize the desired behavior of the
entire swarm. We confirm our theoretical findings with numerical experi-
ments.

So far, swarm models like this have only been studied in Euclidean,
or flat, space. We extend a class of swarm models to curved geome-
tries, or Riemannian Manifolds, using concepts from differential geome-
try. Through numerical simulation, we find that their behavior mimics
the behavior of the same swarms in flat space. We use this in two ways.
We modify swarms to fit on embedded surfaces, creating swarms which
move on spheres and in hyperbolic space. We also use it to modify the
limit cycles of swarms in flat space into desired shapes, like ovals.

Finally, we use Gazebo, a high-fidelity robotics simulator, to simulate
a robotic swarm following the same swarm model. We show that robotic
agents display the behavior which we predict mathematically, indicating
that it is feasible to control robot swarms using this method.

Key words: Swarming, differential geometry, dynamical systems, cou-
pled differential equations.
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1 Introduction

Swarming is a phenomenon commonly seen in nature [1, 2, 3]. Many models
have been proposed for swarms, both Eulerian models (using continuous dy-
namics) and Lagrangian models (predicting the behavior of individual agents)
[4]. More recently, mathematical models of swarm dynamics have been used
to control robotic agents, especially by the United States military [5, 6]. With
this application in mind, we choose to study Lagrangian models as a means to
control each agent individually. Among Lagrangian models, the most commonly
studied swarms are known as potential or gradient swarms: swarms which at-
tempt to minimize a potential function by moving into a desirable configuration
[7].

Our work is primarily concerned with the nonlinear parabolic potential
model for a swarm, with self-propulsion. In the model, N agents with posi-
tion vectors ri obey the following equation of motion:

r̈i = (1− ṙi · ṙi)ṙi − (ri −R) (1)

Where R represents the center of mass of the system.

R =
1

N

N∑
j=1

rj (2)

This model has been studied numerically before [8, 9], but to our knowledge
there does not yet exist a rigorous mathematical characterization of its limit
behavior for any number of agents. The commonly observed limit behavior is
pictured in Figure 1. We are motivated to characterize its behavior analytically,
because we want to understand the system from a mathematical point of view.

Figure 1: Limit behavior of the parabolic potential model, rendered in Blender.
Each small colored dot represents an agent. The dull red dot is the original
center of mass. The bright red dot is the current center of mass. The agents
rotate in a circle of radius 1, at speed 1, around the center of mass. We believe
that this behavior is locally attracting.

We note that Haraux and Jendoubi [10] investigated second-order systems
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of the form:

r̈i = f(ṙi)−
1

N

N∑
j=1

∇riU(ri, rj),

where f : Rn → Rn is a vector-valued function of the agent’s velocity and
U : Rn → R is a potential function which is smooth and radially unbounded.

A function f is called negative-definite if f(x) < 0 for x 6= 0, and f(0) = 0.
If f(ṙi) · ṙi is negative-definite, the system will converge to a limit configuration
which minimizes U locally. We would like to stress that this negative-definiteness
condition does not hold for Equation (1).

Previous researchers have observed in simulation that the system either con-
verges to a rotating circular limit cycle with a fixed center of mass, or the agents
clump together and move along a straight line [11]. We will show that the be-
havior is sometimes more nuanced (see Section 3.4). Our goal is to investigate
stability of the system’s circular rotating state. It is straightforward to show
that the system is translation-invariant, and that, when the center of mass is
fixed, the system decouples into N independent equations.

To understand the decoupled state, we first investigate the behavior of a
simpler system, which we call the decoupled parabolic potential model. It contains
one agent with position vector r, which is attracted to the origin as though it
is the center of mass. This yields the following equation of motion:

r̈ = (1− ṙ · ṙ)ṙ− r (3)

We prove the following about the simplified parabolic potential model:

Theorem 1. Suppose r : R→ R2 is a solution of Equation (3).

(i) If r and ṙ are parallel at some instant, they remain parallel and follow a
unique limit cycle (Theorem 6).

(ii) The origin of the phase space is the unique equilibrium point of the system,
and it is unstable (Theorem 7).

(iii) If r and ṙ are not parallel at some instant, then the system converges
to a circular limit cycle of radius 1 with speed 1 centered on the origin
(Theorem 8).

Theorem 1 globally characterizes the behavior of the decoupled model.
In the next result, we do local stability analysis for the original system with

multiple agents.

Theorem 2. Let N = 2 or 3. Circular limit cycles satisfying Equation (1) with
stationary center of mass are locally stable up to translation (Theorem 9).

We conjecture that this result holds for any number of agents, and discuss
methods to prove it in Section 3.5.

Conjecture 1. For any N > 0, circular limit cycles satisfying Equation (1)
with stationary center of mass are locally stable up to translation.

The other focus of our project is an extension of the parabolic potential
model to Riemannian manifolds. The goal was to find a swarm model which
would exhibit similar behavior to the parabolic model on the manifold: the limit
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cycles would be circular with respect to the Riemannian metric, the speed of
translation would be constant, and the agents would move along geodesics if
there were no interaction. As far as we know, this has not been done before. In
Section 5.1, we present such a model for any gradient swarm. Our observations
through numerical simulation confirm that the behavior of a swarm in Euclidean
space and the modified swarm on a manifold tend to be similar.

The structure of the paper is as follows. In Section 3, we define gradient
swarms in Euclidean space, and prove some results on these swarms. Specifically,
in Section 3.3, we characterize the global behavior of a simplified, decoupled
system with one agent by constructing an explicit Lyapunov function for the
system and using Lasalle’s invariance principle. In Section 3.4, we prove that the
“typical” limit behavior of a rotating state is locally stable for a system of two
or three agents using Lyapunov’s indirect (or linearization) method. In Section
4, we numerically investigate stability of more complicated Morse swarms when
subject to collisions and delay. In Section 5, we use ideas from differential
geometry to generate gradient swarms on Riemannian manifolds. We present
a swarm model whose limit cycles are precisely the circles (the set of points
equidistant from their common center) on the manifold. Finally, in Section 6,
we discuss our technical implementation of our ideas, in mathematics programs
and robotic simulation.

2 Background

For our purposes, a dynamical system is a system in which functions describe
the time-dependent location of agents in space. Dynamical systems are used to
study mathematical models of moving objects. As such, they are often used to
describe swarms. We study continuous dynamical systems, in which the agents
are represented as moving dots on a plane.

In particular, we study first-order and second-order systems. In a first-order
system, a function controls the velocity of an agent. In a second-order system,
a function controls the acceleration of the agent. Many systems in nature are
second-order, since force (and therefore acceleration) is often controlled. An
example is the motion of the planets, which have acceleration proportional to
the gravitational force on them. Under some conditions, second-order systems
can be approximated by first-order ones, which are often much simpler [10, 4].
For an agent with position vector x, we represent the velocity as ẋ and the
acceleration as ẍ; each dot represents a derivative with respect to time.

The systems we study are also autonomous. This means that the functions
which control the system depend only on x and its derivatives, and not on
time itself. In a first-order autonomous system, ẋ is purely a function of the
agent’s position. In a second-order autonomous system, ẍ is a function of x
and ẋ. These systems are also known as time-invariant, because the velocity
and acceleration of the agents do not depend on time. Finally, the systems are
homogeneous: all agents have the same equation of motion.

We define a swarm as a dynamical system of coupled agents. Agents are
coupled if their equations of motion depend on the positions of other agents.
Agents in a swarm each have a position vector ri, and some equation of motion.
Since we study homogeneous swarms, we can represent the entire system by
giving the equation of motion of one agent. Our representation of these systems
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can therefore be written as follows:

ṙi = f(r1, r2, . . . , rN ) (a first-order system)

r̈i = f(ṙ1, ṙ2, . . . , ṙN , r1, r2, . . . , rN ) (a second-order system)

We define an equilibrium configuration of a swarm of agents with positions
ri as a list of position vectors (r̄1, r̄2, . . . , r̄N ) such that if. at time t, ri = r̄i
and ṙi = 0 for all i, the agents will remain at these positions for all time.

2.1 Manifolds and Curved Space

We are interested in extensions of swarm models to curved spaces for several
reasons. In nature, animals may find themselves constrained to certain surfaces.
For example, microorganisms living near hydrothermal vents may need to stay
on the surface of a sphere, to remain both safe from heat and close enough for
photosynthesis [12]. Man-made robot swarms may also find themselves con-
strained to surfaces. Swarms of robots are being considered for applications
to space [13], in which they may need to move on the surface of a sphere (for
example, orbits of equal height). In a military context, swarms of robots may
need to avoid anti-aircraft fire, which may be easier if they are constrained to
a surface of negative curvature (like a psuedosphere, which exhibits hyperbolic
geometry).

Mathematically, the concept of a surface is formalized as a Riemannian
manifold. A Riemannian manifold is a surface that is locally flat. Informally, a
resident of a Riemannian manifold might believe that he lived on a plane, if he
was small enough. The earth is an example of a Riemannian manifold, since at
first glance it appears that we live on a plane.

Riemannian manifolds allow us to perform vector operations on their surface,
and therefore calculate distances and angles, using an operation called the inner
product. We may also define coordinate systems on Riemannian manifolds,
called curvilinear coordinates, which allow us to calculate these quantities.

Figure 2: Examples of Riemannian manifolds, each tiled by triangles. From left
to right, the sphere, the Euclidean plane, and the Poincaré disk representation
of the hyperbolic plane (images from Wikipedia).

On Riemannian manifolds, the shortest distance between two points is not
necessarily a straight line in the curvilinear coordinates. Instead, the concept
of a straight line is generalized as a geodesic: a locally length-minimizing curve.
For any two points on a Riemannian manifold M , the shortest distance between
them is a geodesic. On the earth, a geodesic is a great circle. Great circles are
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Figure 3: An example of a geodesic on the earth, showing a flight path from
Beijing to Baltimore.

Figure 4: Two vectors on a Riemannian manifold. Their angle and lengths can
be calculated using the inner product. A geodesic is shown in red.

used for navigation, since traveling along them yields the shortest path between
two points (see Figure 3).

2.2 Lyapunov Stability Theory

Much of our work relies on Lyapunov stability theory. Lyapunov stability theory
was developed in the late 19th Century, in order to characterize the behavior
of systems with no exact solution [14, 15, 16]. In particular, we use Lasalle’s
invariance principle to characterize the behavior of the single-agent system, and
Lyapunov’s indirect (linearization) method to characterize the local behavior of
multi-agent systems.

Lyapunov stability theory uses the concept of a Lyapunov function, analo-
gous to the energy of a system. If we can show that the system has decreasing
energy, and that this energy approaches a certain value, Lyapunov stability
theory tells us that the entire system will approach the corresponding behavior.

Lyapunov functions can be used to show stability of points in nonlinear sys-
tems. An example is a damped swinging pendulum. The angle of the pendulum
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−cθ̇

Figure 5: Diagram of a damped pendulum.

to the vertical, θ, can be represented by the dynamical system:

θ̈ = −cθ̇ − g

l
sin θ

Where g is the acceleration of gravity, l is the length of the pendulum’s rod,
and c is a positive damping coefficient. We can use a Lyapunov function gained
from the energy of the system:

L =
1

2
lθ̇2 + g(1− cos θ)

Differentiating L with respect to t, we have:

d

dt
L = lθ̈θ̇ + gθ̇ sin θ

= lθ̇(−cθ̇ − g

l
sin θ) + gθ̇ sin θ

= lθ̇(−cθ̇) = −clθ̇2

So the derivative of L is negative-definite, meaning that L composes to a mini-
mum. L is minimized at the point θ = 0, θ̇ = 0, so the system will converge to
be motionless at the bottom of its swing.

The theorems that follow are all variations on this concept.

Theorem 3 (Lasalle). Let an autonomous dynamical system be defined on a
region D ⊂ Rn, with the equation of motion:

ẋ = f(x) (4)

Where f : D → Rn is a locally Lipschitz map. Let Ω ∈ D be a compact set that
is positively invariant with respect to (4) - in other words, a solution x(t) of (4)
with x(0) ∈ Ω satisfies x(t) ∈ Ω for all t > 0. Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 for all trajectories in Ω. Let E be the
set of all points in Ω where V̇ (x) = 0. Let M be the largest invariant set in E.
Then every solution starting in Ω approaches M as t→∞.

Proof. This proof is adapted from a proof published in Nonlinear Systems, by
Khalil [16].

Let x(t) be a solution of (4) starting in Ω. V̇ (x) ≤ 0 in Ω, and trajectories
beginning in Ω will remain within Ω for all time, since Ω is invariant. Therefore,
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V (x(t)) is a decreasing function of t. V (x) is continuous on the compact set Ω,
so it is bounded from below on Ω. Therefore, V (x(t)) has a limit a as t → ∞.
Ω is compact, so it is closed, so the positive limit set L+ is in Ω. For any p in
L+, there is a sequence tn such that tn → ∞ and x(tn) → p as n → ∞. By
continuity of V (x), V (p) = limn→∞ V (x(tn)) = a. Therefore, V (x) = a on L+.
Thus:

L+ ⊂M ⊂ E ⊂ Ω

Since x(t) is bounded, x(t) approaches (becomes arbitrarily close to a member
of) L+ as t→∞. Therefore, x(t) approaches M as t→∞.

The idea behind Theorem 3 is that, if there exists a function V which de-
creases (although not strictly) along trajectories of the system, and V is bounded
below with bounded sublevel sets, eventually V must converge, and so the sys-
tem must converge to an invariant state where V̇ = 0. Informally, we may think
of V as a sort of “energy function” of the system. Indeed, energy is often used
as this function in damped physical systems.

We also rely on the following theorems about linearized systems:

Theorem 4. For the linear system ẋ = Ax, the equilibrium point x = 0 is stable
if and only if all eigenvalues of A satisfy Re(λi) ≤ 0 and for every eigenvalue
with Re(λi) = 0 and algebraic multiplicity qi ≥ 2, rank(A−λiI) = n− qi, where
n is the dimension of x. The equilibrium point x = 0 is (globally) asymptotically
stable if and only if all eigenvalues of A satisfy Re(λi) < 0.

For a proof, see Khalil [16], Theorem 4.5.

Theorem 5 (Lyapunov’s indirect (linearization) method). Let x = 0 be an
equilibrium point of the nonlinear system

ẋ = f(x)

where f : D → Rn is continuously differentiable and D is a neighborhood of the
origin. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=0

Then:

1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(λi) > 0 for one or more eigenvalues of A.

For a proof, see Khalil [16], Theorem 4.7.
Theorems 4 and 5 allow us to automatically find an energy function for linear

and nonlinear systems respectively, but in nonlinear systems, this only works
close to equilibrium points. These theorems are useful because they allow us
to automatically characterize the behavior of a nonlinear system near a certain
configuration, but they are limited because they tell us nothing about the global
behavior of a nonlinear system.
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3 Gradient Swarm Models

We study a class of swarm models called gradient swarm models, which have
been studied extensively [4, 7, 8, 17, 18, 19]. This section lays out the theory
behind these models, and the advances that we have made in the parabolic
potential model, which is itself a gradient swarm model.

For some functions f : Rn → Rn and U : Rn → R, Haraux and Jendoubi [10]
define first- and second-order gradient systems respectively as follows:

ẋ = −∇U(x) (5)

ẍ = −f(x)−∇U(x) (6)

Let a swarm of N agents in Rn be given with position vectors ri. We define
a potential function is a function U : R2n → R. Examples of commonly-studied
potential functions are:

U(ri, rj) = ‖ri − rj‖2 (parabolic potential)

U(ri, rj) =
10

9
exp

(
−4‖ri − rj‖

3

)
− exp(−‖ri − rj‖) (Morse potential)

In a gradient swarm, the parabolic potential will produce attraction to the center
of mass. The Morse potential will produce pairwise attraction at long distances,
and repulsion at short distances.

We work with potential functions satisfying several criteria:

1. U is smooth (infinitely differentiable).

2. U is bounded below.

3. All sublevel sets of U are bounded (sublevel sets are sets of the form
{x : U(x) < k} for some k ∈ R).

We define the swarm potential, S, as the sum of the potential functions for every
pair of agents:

S(r1, r2, . . . rN ) =

N∑
i=1
j=1
i 6=j

U(ri, rj)

3.1 First-Order Gradient Swarms

A first-order gradient swarm is a dynamical system of N agents in n dimensions
satisfying the following equation of motion:

ṙi = − 1

N

N∑
j=1

∇riU(ri, rj)

Where ∇ri signifies taking the gradient with respect to ri.
Mogilner et al. [4] showed that one-dimensional first-order gradient swarms

always converge to an equilibrium configuration if U satisfies the properties
of a potential function, and produced a way to prove this in arbitrarily many
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dimensions. Alternatively, we may view the positions of all agents as one large
vector R, and the swarm as a large gradient system of the form:

Ṙ = −∇S(R)

It is well-known that systems like this converge to equilibrium points if S is
bounded below, and all sublevel sets of S are bounded.

3.2 Second-Order Gradient Swarms

A second-order gradient swarm is a dynamical system of N agents in n dimen-
sions satisfying the following equation of motion:

r̈i = f(ṙi)−
1

N

N∑
j=1

∇riU(ri, rj)

Where f : Rn → Rn is a vector-valued function of the agent’s velocity.
In the case where f(ṙi)·ṙi is negative-definite, a second-order gradient swarm

will converge to a limit configuration. Furthermore, the set of limit configura-
tions is equal to the set of limit configurations of the first-order system with the
same potential function.

Mogilner et al. [4] argued that this is true because such second-order gradient
systems are similar to first-order systems at low speeds. We found that these
swarms are high-dimensional cases of the second-order gradient systems studied
by Haraux and Jendoubi [10]. Their work gives us a Lyapunov function for the
system:

L = S +

N∑
i=1

1

2
(ṙi · ṙi)

This is minimized when S is minimized and the agents are motionless, therefore
the system will converge to minima of S.

If f(ṙi) · ṙi is not negative-definite, second-order gradient swarms do not
necessarily converge to equilibrium configurations. An example of a gradient
swarm which does not necessarily converge is the nonlinear parabolic potential
model:

r̈i = (1− ṙi · ṙi)ṙi −
1

N

N∑
j=1

∇ri‖ri − rj‖2 (7)

This system is equal to the parabolic potential model in Equation (1), and is
our main topic of study.

We have observed through numerical simulation that typically (though not
always) the center of mass of the system converges to an equilibrium point, and
all agents converge to circular limit cycles around the point (pictured in Figure
7). While the system has been examined (e.g. by Ebeling and Schweitzer [8]), to
our knowledge, there exist no proofs of stability concerning this limit behavior.

In order to show that this limit behavior is stable, we first note that often
the system consists of agents rotating in both directions: clockwise and coun-
terclockwise. These systems can be split in two: the agents rotating one way
can be decoupled from the agents rotating the opposite way. Because of this, we
attempt to show that rotating behavior with all agents rotating in one direction
is locally stable.
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Figure 6: Limit behavior of the parabolic potential model. Agents rotate both
ways, but we can decouple the system into all agents rotating in one direction,
and all agents rotating in the opposite direction. Both groups should have a
stationary center of mass.

3.3 Simplified Parabolic Model

In order to understand the swarm, we construct a simplified model with one
agent centered on the origin. The system’s behavior is given by the following
equation of motion:

r̈ = (1− ṙ · ṙ)ṙ− r (8)

Theorem 6 (Original). If r and ṙ are parallel at some instant, then they remain
parallel and follow a unique limit cycle.

Proof. First, suppose that r and ṙ are parallel, i.e. for some unit vector r̂, we
have:

r = ar̂

ṙ = br̂

Then (8) yields:
r̈ = (b− b3 − a)r̂

The acceleration is parallel to r̂, so the entire system is constrained to the line
kr̂. We can rewrite differential equations for a and b:

ȧ = b

ḃ = b− b3 − a
(9)

Liénard theory has been used before to investigate coupled systems [20], so we
were motivated to use it to understand this one. We may rewrite this system
as a Liénard system, using the substitution:

x = b

y = −a
f(x) = x3 − x

15



Then (9) becomes:

ẋ = y − f(x)

ẏ = −x
(10)

Liénard [21] investigated this type of system. This system is a special case
studied by Lins, Melo, and Pugh [22]. It has a unique stable limit cycle if:

1. f is continuous,

2. f is odd,

3. f has a unique positive root at x = k, and

4. f is monotone increasing for x > k.

f satisfies all four properties with k = 1, so a unique stable limit cycle exists if
r and ṙ are parallel.

Theorem 7 (Original). a = 0, b = 0 is the unique equilibrium point of the
system in Equation (refonedimension), and it is unstable.

Proof. Suppose ȧ = ḃ = 0. Then b = 0, and b − b3 − a = −a = 0. So (0, 0) is
the unique equilibrium point.

To see that it is unstable, use Lyapunov’s indirect method [14]. The Jacobian
of the system at (0, 0) is:

J =

(
0 1
−1 1

)
Which has eigenvalues 1

2 ±
√
3
2 i. Since the real parts of all eigenvalues are

positive, the equilibrium point is unstable.

Theorem 8 (Original). Suppose that r and ṙ are not parallel. Then the system
converges to a circular limit cycle of radius 1 with speed 1 centered on the origin.

Proof. We define scalars u, v and w using the following substitution:

u = r · r
v = ṙ · ṙ
w = ṙ · r

(11)

Differentiating each scalar, we have:

u̇ = 2ṙ · r = 2w

v̇ = 2r̈ · ṙ = 2(1− ṙ · ṙ)ṙ · ṙ− 2r · ṙ = 2v(1− v)− 2w

ẇ = r̈ · r + ṙ · ṙ = (1− ṙ · ṙ)ṙ · r− r · r + ṙ · ṙ = w(1− v)− u+ v

(12)

This system is also subject to the following constraints:

u ≥ 0 because it is the squared norm of a vector.

v ≥ 0 because it is the squared norm of a vector.

w2 ≤ uv by the Cauchy-Schwarz Inequality.

(13)
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In the case where w2 = uv, we have (ṙ · r)2 = (r · r)(ṙ · ṙ), so the two vectors are
parallel. In this case, the system reduces to the one-dimensional case. If u = 0
or v = 0, it must be the case that w2 = uv, so we also have the one-dimensional
case. If we have u = v = 0, we have the unstable equilibrium point in the
one-dimensional case. Therefore, we are only interested in the behavior within
the following region, which we call Ω:

u > 0

v > 0

w2 < uv

(14)

Strogatz [15] remarks on the difficulty of finding Lyapunov functions:

Unfortunately, there is no systematic way to construct Liapunov
functions. Divine inspiration is usually required, although some-
times one can work backwards.

Despite this, we were able to find a function which proves stability of the de-
coupled system. We define this function L : Ω→ R as:

L = u+ v − log(uv − w2)

Since uv − w2 > 0 in Ω, L is defined throughout Ω. It is worth noting that L
does not correspond to any actual physical quantity. It is merely a function that
has the properties we require. We will show that L satisfies all requirements of
Lasalle’s Theorem (3).

L is radially unbounded, i.e. L → ∞ as |(u, v, w)| → ∞. To see this, note
that:

L = u+ v − log(uv − w2) ≥ (u− log(u)) + (v − log(v))

Since u− log(u) and v − log(v) are unbounded above, L is radially unbounded.
Furthermore, L approaches infinity on the boundaries of Ω. For some fixed
values of u and v, as w2 → uv from below, log(uv − w2) → −∞, so L → ∞.
Together, this means that all sublevel sets of L are bounded.

For some constant k, we denote the sublevel set {(u, v, w) : L(u, v, w) ≤ k}
by Ω(k). Since L is continuous, and all sets L ≤ k are closed, all Ω(k) are closed.
Therefore, all Ω(k) are compact.

L has one stationary point in Ω, at (1, 1, 0). To show this, take the gradient,
and set it equal to zero:

∇L =

1− v
uv−w2

1− u
uv−w2

2w
uv−w2

 =

0
0
0


This yields:

v = uv − w2

u = uv − w2

w = 0

⇒
(1− u)v = 0

(1− v)u = 0

w = 0

(15)

17



Since u and v are positive in Ω, the only solution is (u, v, w) = (1, 1, 0). In
addition, (1, 1, 0) is a minimum. To show this, we compute the Hessian of L:

H =


v2

(uv−w2)2
uv

(uv−w2)2
− 1

uv−w2 − 2vw
(uv−w2)2

uv
(uv−w2)2

− 1
uv−w2

u2

(uv−w2)2
− 2uw

(uv−w2)2

− 2vw
(uv−w2)2

− 2uw
(uv−w2)2

4w2

(uv−w2)2
+ 2

uv−w2


At the point (1, 1, 0), this becomes:

H =

1 0 0
0 1 0
0 0 2


Since this is positive-definite, (1,1,0) is a minimum. Since it is the only

stationary point in Ω, and L→∞ on the boundary of Ω, it is a global minimum.
For all trajectories beginning in Ω:

dL

dt
= ∇L ·

u′(t)v′(t)
w′(t)


=

1− v
uv−w2

1− u
uv−w2

2w
uv−w2

 ·
 2w

2v(1− v)− 2w
w(1− v)− u+ v


=

(
2w − 2vw

uv − w2

)
+

(
2v(1− v)− 2w − 2uv(1− v)

uv − w2
+

2uw

uv − w2

)
+

(
2w2(1− v)

uv − w2
− 2uw

uv − w2
+

2vw

uv − w2

)
= 2v(1− v)− 2(uv − w2)(1− v)

uv − w2

= −2(1− v)2

(16)

So L is decreasing on any trajectory beginning in Ω. Therefore, L is indeed
a Lyapunov function, and all sublevel sets of L are invariant [14].

We have, for any Ω(k), Ω(k) is closed, bounded, and invariant. Given any
trajectory (u(t), v(t), w(t), we may apply Theorem 3 on Ω(L(u(0), v(0), w(0))).
Theorem 3 guarantees that (u, v, w) approaches the largest invariant set inside
which L̇(u, v, w) = 0. All that remains is to show that this set is equal to the
point (1, 1, 0).

Since (1, 1, 0) is a global minimum of L, it is in every nonempty sublevel set
of L. Suppose that L̇ = 0 for some trajectory (u(t), v(t), w(t)). Then:

−2(1− v(t))2 = 0⇒ v(t) = 1 for all t > 0

So by equation (12):

v̇(t) = 0⇒ 2v(t)(1− v(t))− 2w(t) = 0⇒ w(t) = 0 for all t > 0

So:

ẇ(t) = 0⇒ w(t)(1− v(t))− u(t) + v(t) = 0⇒ u(t) = 1 for all t > 0
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So the only invariant set in any Ω(k) with V̇ (u(t), v(t), w(t)) = 0 is the point
(1, 1, 0).

Therefore, by Theorem 3, every trajectory beginning in Ω converges to the
point (1, 1, 0).

So r · r→ 1, ṙ · ṙ→ 1, and ṙ · r→ 0.
So if r(0) and ṙ(0) are not parallel, the system converges to a circular limit

cycle of radius 1 with speed 1 centered on the origin.

3.4 Two-Agent Model

We next examine the behavior of two coupled agents, with position vectors r1
and r2. The agents have equations of motion:

r̈1 = (1− ṙ1 · ṙ1)ṙ1 −
1

2
r1 +

1

2
r2

r̈2 = (1− ṙ2 · ṙ2)ṙ2 −
1

2
r2 +

1

2
r1

(17)

We have not characterized the behavior of the two-agent system globally. There
exist at least three behaviors which we have seen in simulation: a one-dimensional
oscillation, a rotating behavior, and a translating behavior, pictured in Figure
7.

0.5 1.0 1.5

-1.0

-0.5

0.5

(a) One-dimenstional oscillating state

-1.5 -1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

(b) Rotating state

5 10 15

-1.5

-1.0

-0.5

0.5

1.0

(c) Translating state

Figure 7: Different behaviors of a swarm of two agents. Different initial con-
ditions produce these behaviors. The plotted lines are the trajectories of two
agents on the plane, with varying initial conditions.

We have shown that the rotating behavior is locally stable by rewriting the
system and using Lyapunov’s indirect (linearization) method.

Theorem 9 (Original). Rotating behavior is locally stable for a parabolic po-
tential model of two agents.
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Proof. We begin by reformulating the system using the following substitution:

u = |r1 − r2|
v1 = |ṙ1|
v2 = |ṙ2|
θ1 = angle between ṙ1 and (r1 − r2)

θ2 = angle between ṙ2 and (r2 − r1)

(18)

We now differentiate each term.

u̇ =
1

|r1 − r2|
(ṙ1 + ṙ2) · (r2 − r1)

=
1

u
(uv1 cos θ1 + uv2 cos θ2)

= v1 cos θ1 + v2 cos θ2

(19)

v̇1 =
1

|ṙ1|
(r̈1 · ṙ1)

=
1

v1
((1− ṙ1 · ṙ1)ṙ1 · ṙ1 −

1

2
(r1 − r2) · ṙ1)

=
1

v1
((1− v21)v21 −

1

2
uv1 cos θ1)

= (1− v21)v1 −
1

2
v1 cos θ1

(20)

A similar argument can be used to show that:

v̇2 = (1− v22)v2 −
1

2
v2 cos θ2 (21)

The final two derivatives can be calculated implicitly. First, denote the angle
between ṙ1 and ṙ2 as φ. We can see from Figure 8 that φ = π − θ1 − θ2. Then
we have:

cosφ = cos(π − θ1 − θ2) = − cos(θ1 + θ2) = sin θ1 sin θ2 − cos θ1 cos θ2 (22)

We can now calculate the final two derivatives implicitly. First, note that:

uv1 cos θ1 = ṙ1 · (r1 − r2) (23)

Differentiating the left hand side yields:

d

dt
(uv1 cos θ1) = (u̇v1 + uv̇1) cos θ1 − uv1θ̇1 sin θ1

= v21 cos2 θ1 + v1v2 cos θ1 cos θ2 + uv1(1− v21) cos θ1 −
1

2
u2 cos2 θ1 − uv1θ̇1 sin θ1

(24)
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ṙ2
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θ1 φ

Figure 8: Calculating the angle between ṙ1 and ṙ2.

Differentiating the right hand side:

d

dt
(ṙ1 · (r1 − r2)) = r̈1 · (r1 − r2) + r1 · r1 − r1 · r2

= (1− ṙ1 · ṙ1)ṙ1 · (r1 − r2)− 1

2
(r1 − r2) · (r1 − r2) + r1 · r1 − r1 · r2

= (1− v21)uv1 cos θ1 −
1

2
u2 + v21 + v1v2 cos θ1 cos θ2 − v1v2 sin θ1 sin θ2

(25)

Equating (24) and (25) and canceling:

v21 cos2 θ1 −
1

2
u2 cos2 θ1 − uv1θ̇1 sin θ1 = −1

2
u2 + v21 − v1v2 sin θ1 sin θ2 (26)

Rearranging for θ̇1:

θ̇1 =
1
2u

2 − 1
2u

2 cos2 θ1 − v21 + v21 cos2 θ1 + v1v2 sin θ1 sin θ2

uv1 sin θ1

=
1
2u

2 sin2 θ1 − v21 sin2 θ1 + v1v2 sin θ1 sin θ2

uv1 sin θ1

=

(
u

2v1
− v1
u

)
sin θ1 +

v2
u

sin θ2

(27)

A similar argument shows that:

θ̇2 =

(
u

2v2
− v2
u

)
sin θ2 +

v1
u

sin θ1 (28)

Equations (19), (20), (21), (27), and (28) give the following system of differ-
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ential equations:

u̇ = v1 cos θ1 + v2 cos θ2

v̇1 = (1− v21)v1 −
1

2
v1 cos θ1

v̇2 = (1− v22)v2 −
1

2
v2 cos θ1

θ̇1 =

(
u

2v1
− v1
u

)
sin θ1 +

v2
u

sin θ2

θ̇2 =

(
u

2v2
− v2
u

)
sin θ2 +

v1
u

sin θ1

(29)

The rotating behavior corresponds to the case when the distance between
particles and the center of mass is 1, and therefore u = 2. The speed of both
agents v1 and v2 will be 1. We also expect that the direction of rotation will
be orthogonal to the vector between the two agents, and in opposite directions,
giving us that θ1 and θ2 are both π

2 or both −π2 . This gives us the following
two points: (2, 1, 1, π/2, π/2), and (2, 1, 1,−π/2,−π/2). At these two points,
we linearize the system by calculating the Jacobian matrices:

J(2, 1, 1, π/2, π/2) =


0 0 0 −1 −1
0 −2 0 1 0
0 0 −2 0 1
1
2 − 3

2
1
2 0 0

1
2

1
2 − 3

2 0 0



J(2, 1, 1,−π/2,−π/2) =


0 0 0 1 1
0 −2 0 −1 0
0 0 −2 0 −1
− 1

2
3
2 − 1

2 0 0
− 1

2 − 1
2

3
2 0 0


(30)

We calculated the values of the eigenvalues of these matrices. For both
matrices, the eigenvalues are (−1.544,−1 ± i,−0.228 ± 1.115i). Since all these
eigenvalues are in the negative complex half-plane, local stability follows from
Lyapunov’s indirect method [14].

3.5 Systems with More Agents

We are currently investigating stability of systems with more than two agents.
For a system of N agents, we use the following change of coordinates to describe
the position of the ith agent in system (1):

ui = Distance between the ith agent and the center of mass

vi = Speed of the ith agent

θi = Angle between the ith agent and the positive x-axis

φi = Angle between the vector (ri −R) and the vector ṙi

(31)
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Where ri is the position vector of the ith agent, and R is the center of mass of
the system. This leads to the following system of differential equations:

u̇i = vi cosφi −
1

N

N∑
j=1

vj cos(φj + θj − θi)

v̇i = (1− v2i )vi − ui cosφi

θ̇i =
vi
ui

sinφi −
1

uiN

N∑
j=1

vj sin(φj + θj − θi)

φ̇i = (
ui
vi
− vi
ui

) sinφi +
1

uiN

N∑
j=1

vj sin(φj + θj − θi)

(32)

This system shifts the center of mass onto the origin. It is therefore necessary
to include the constraint that

∑N
i=1(ui cos θi, ui sin θi) = (0, 0). As might be

expected, the manifold created by this constraint is invariant, so we may restrict
ourselves to studying the behavior of the system on this manifold.

We believe that the following conjecture is true:

Conjecture 1. For any N > 0, circular limit cycles satisfying Equation (1)
with stationary center of mass are locally stable up to translation.

We have shown this using a linearization for 3 agents, but with higher num-
bers of agents, the system has dimensions of neutral stability. For example,
there are many possible configurations in a swarm of five agents: we may per-
turb all agents along the unit circle in a way which maintains the center of mass.
This type of perturbation is pictured in Figure 9.

Figure 9: A perturbation which keeps the center of mass constant in a five-agent
system.

MIDN Carl Kolon, Prof. Kostya Medynets, and Prof. Irina Popovici, all at
USNA, are currently attempting to use center manifold analysis to prove that
this conjecture is indeed true for any number of agents.

4 Swarm Collisions

Robot swarms can be controlled with the same potential models analyzed in
the literature [23, 24]. Typically, a translating or flocking state is desired, in
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which all agents have similar speed and are spaced fairly regularly. It is also
often desirable for two flocks to merge and continue as a larger flock.

4.1 Morse Swarms

While the parabolic potential model admits more analytical study, other models
have been studied which produce results that more closely mimic the behavior of
real organisms. A commonly studied example is the attractive-repulsive model
proposed by D’Orsogna et al. [7]. The model is a system of N agents in n-
dimensional space with position vectors xi, acting under the following equation
of motion:

ẍi = (α− β|ẋi|2)ẋi −
λ

N

N∑
j−1,i6=j

∇xi
U(xi, xj) (33)

Where α, β, λ are constants, U : R2n → R is a potential function of the
two agents’ position, and ∇xi represents taking the gradient with respect to xi.
Many potential functions can be used, but a typical choice is the scaled Morse
potential:

U(xi, xj) = C exp(−|xi − xj |/l)− exp(−|xi − xj |) (34)

When the Morse potential is used, we call the resulting swarm a Morse swarm.

4.2 Without Delay

The Morse swarm’s behavior is too complicated to characterize analytically, but
we are still interested in its stability properties. In particular, we are interested
in the stability of colliding swarms.

When ∇xi
U(xi, xj) = 0 for all i, j ≤ N with i 6= j, the configuration of

agents is called a flock [18]. In a Morse swarm, a flock undergoes translating
motion at a constant speed

√
α/β, and can withstand sufficiently small per-

turbations [19]. We are interested in flock collisions. Two separate flocks are
initialized and pointed towards each other with some incident angle, which we
call θ. We are interested in the behavior after collision, and how it varies for
varying λ, θ, and τ .

Figure 10: The incident angle of the collision, θ, which we vary as a parameter.

Flocking is not the only behavior that Morse swarms display. They also can
perform milling behavior, where the agents rotate around a stationary center
of mass. To differentiate between the two behaviors, Armbruster, Martin, and
Thatcher [17] calculated the polarization of the swarm: the directed sum of
velocities. For a system of N agents with position vectors xi, the polarization
P of the flock is:

P (x1, x2, . . . , xN ) =

∣∣∣∣∣
∑N
i=1 ẋi∑N
i=1|ẋi|

∣∣∣∣∣
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If the velocities are coherent, we expect a value of P close to 1. If the velocities
point in all directions, we expect a value close to 0. Therefore, polarization
is a good measure of whether the system displays flocking (P ≈ 1), or milling
(P ≈ 0). Additionally, two colliding swarms can scatter, in which they do not
form a coherent group which either flocks or mills. In this case, we expect P to
be neither close to 0 nor close to 1.

(a) Flocking. (b) Milling. (c) Scattering.

Figure 11: Flocking, milling, and scattering behavior in a Morse swarm.

Using Wolfram Mathematica 11.2, we simulated two flocks of 25 agents each
colliding. We varied the values of λ, the coupling strength, and θ, the incident
angle of the collision.

We first reproduced the results of Armbruster, Martin, and Thatcher [17] by
performing the experiment with τ = 0, corresponding to a system with instan-
taneous interactions. We simulated 400 collisions and recorded the polarization
after 100 time units. We generated the plot in figure 12.

This is similar to previous results. For low values of λ, scattering is likely
unless the swarm motion is almost parallel to begin with. For intermediate
values of λ, flocking is likely. For high values of λ, milling dominates. A region
of metastability exists between the flocking and milling states.

4.3 With Delay

In any robotic swarm there must be some delay between sensing and actuation.
We investigated the result of applying delay to the coupling terms of a swarm
model. As a result, every agent behaves as though the other agents are at the
positions they were at τ time units before. We found that the flocking state is
unlikely following collisions of delay-coupled swarms, even for fairly small values
of τ .

We modified the model to include the time delay τ , creating the following
delay differential equation from equation (33).

ẍi(t) = (α− β|ẋi(t)|2)ẋi(t)−
λ

N

N∑
j−1,i6=j

∇xi
U(xi(t), xj(t− τ)) (35)

With U defined in equation (34). Since this is a delay differential equation, it
requires a history function, for which we used translating motion of the two
flocks along linear trajectories.
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Figure 12: Polarization as a function of λ and θ for an instantaneously-
interacting swarm. Note the distinct regions of flocking, milling, scattering,
and metastability.

Initially, we tried three distinct values of τ : 0, 0.1, and 0.2. We generated
the plots in figure 13.

We can note several things about the introduction of delay. Even at the
fairly small τ value of 0.2, flocking behavior nearly vanishes. Instead, scattering
behavior becomes more likely for low λ, and milling behavior becomes more
likely for high λ.

Next, we fixed θ at π
4 and varied τ finely, to observe polarization as a func-

tion of τ and λ. We generated the plot in figure 14. This confirms that as
delay increases steadily, milling behavior largely replaces flocking behavior. A
complete writeup of our results is available on the ArXiv [25].

5 Motion on Riemannian Manifolds

We investigate the motion of swarms on curved surfaces, or Riemannian man-
ifolds, in order to create a new class of swarms which can operate when con-
strained to surfaces. In this section, we generalize the concept of a gradient
swarm to Riemannian manifolds. To our knowledge, this has never been done.
So far, we have only observed the behavior of the system numerically, but the
behavior of gradient swarms on manifolds appears to mimic their behavior in
Euclidean space. As is common in differential geometry, we use Einstein sum-
mation notation for our equations.

A Riemannian manifold is a smooth manifold M equipped with an inner
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(a) τ = 0
(b) τ = 0.1

(c) τ = 0.2

Figure 13: Polarization as a function of λ and θ for 3 distinct values of τ .

product 〈·, ·〉p (the metric tensor) on the tangent space TpM at every point p.
The inner product varies smoothly along any vector field on M . On a chart of a
Riemannian manifold with coordinates xi, the metric tensor is often represented
as g, such that for two tangent vectors u and v, 〈u,v〉 = giju

ivj .
A geodesic is a locally length-minimizing curve. A geodesic γ satisfies the

geodesic equation [26]:
γ̈a + Γaij γ̇

iγ̇j = 0

in all coordinate directions a, where Γ is the Christoffel symbol of the second
kind, defined as:

Γaij =
1

2
gak(

∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

An agent on the manifold with position vector x = (x1, x2, . . . , xa) moving
with no external acceleration will follow geodesic paths, so such an agent will
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Figure 14: A plot of polarization as a function of λ and τ for fixed θ. Note that
flocking behavior all but disappears above τ ≈ 0.1.

satisfy the following equation of motion:

ẍa + Γaij ẋ
iẋj = 0

The concept of the gradient is different on a Riemannian manifold as well.
For a function f : M → R, and some vector field V on M , we desire that the
gradient have the following property:

(∇f)T gV = dfT (V )

Where df is the directional derivative of f , and T represents the transpose.
Since this is an identity for any V :

(∇f)T g = dfT

Which gives:
gT∇f = df

And since inner products are symmetric:

∇f = g−1df

This gives the following form for the gradient on a Riemannian manifold:

∇f =
∑
k

gik
∂f

∂xk
ei (36)

28



5.1 Swarming on Riemannian Manifolds

The original swarm in Euclidean space has equation of motion:

r̈i = f(ṙ)− 1

N

N∑
j=1

∇riU(ri, rj) (37)

To make this swarm suitable for manifolds, we must do two things:

1. We must change the flat representation of the gradient to the Riemannian
manifold representation.

2. We must ensure that, if f and U are everywhere zero, the agent moves
along a geodesic.

To do this, we define a gradient swarm of N agents with positions ri =
(r1i , . . . , r

n
i ) (in curvilinear coordinates) by the following equation of motion:

r̈ai = fa(ṙi)− Γajkṙ
j
i ṙ
k
i −

1

N

N∑
j=1

n∑
k=1

gak
∂

∂rki
U(ri, rj) (38)

Our numerical simulations of this system show that it inherits many familiar
properties of gradient swarms. To replicate the parabolic potential model, we
used the following values of f and U :

fa(ṙ) = (1− gij ṙiṙj)ra

U(ri, rj) = the squared length of the shortest path between ri and rj
(39)

On some Riemannian manifolds (e.g. the sphere and hyperbolic half-plane),
there are closed-form expressions for both f and U . We numerically simulated
the parabolic potential model on these surfaces, and found that the swarms still
formed circular limit cycles (see Figure 15). Our current methods for simulating
the system when there are not closed-form expressions for f and U are too
computationally intensive to use, but we are working on methods which use less
computing power.

5.2 Modifying Limit Cycles

We used the concepts developed with the generalization of gradient swarms
to modify the limit cycles of the nonlinear parabolic potential model. Other
methods to achieve this were considered by Medynets and Schwartz [9]. By
using a constant (flat) matrix as our metric tensor, we can skew the motion of
the agents. In this case, there is also a closed form for the distance between
agents. This allows us to numerically simulate the modified swarms, which have
oval limit cycles rather than circles.

5.3 Generalization of other Gradient Swarms

We have used Equation (38) to generalize other types of gradient swarms to
Riemannian manifolds. For example, we used the new potential function:

U(ri, rj) = C exp(−d(xi, xj)/l)− exp(−d(xi, xj))
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(a) Swarm in hyperbolic half-plane (b) Swarm on sphere

Figure 15: Generalized parabolic potential swarms simulated on two different
manifolds.

Figure 16: Modifying the parabolic potential model to produce a swarm with
oval limit cycles.
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Figure 17: A Morse swarm on a sphere

To generalize the Morse potential. Our results on a sphere are pictured in Figure
17. We observed behavior similar to the Morse swarm in flat space. Our results
can be repeated by modifying the potential function in the Mathematica code
in Appendix A.

6 Technical Implementation

We are interested in the applications of this research to the motion of swarms
of unmanned vehicles. We have implemented swarm models like the nonlinear
parabolic potential model in Wolfram Mathematica (see Appendix A). We then
designed a package in ROS, the Robot Operating System, to communicate the
desired velocity (generated by numerically solving the differential equation in
Mathematica) to UAV models in Gazebo, a high-fidelity physics simulator. Our
control structure is pictured in Figure 18.

ROS and Mathematica communicated through CSV files. Our work was
based on the work of Gilner [27], who controlled a Parrot ArDrone 2.0 using
Mathematica and ROS.

Our method follows:

6.1 ROS and Gazebo Setup

We used ROS Kinetic on a machine running Ubuntu 16.04.

1. To install ROS on Ubuntu, follow the instructions at http://wiki.ros.org/kinetic/Installation/Ubuntu.

31



Figure 18: A diagram of the control structure. Differential equations are solved
in Wolfram Mathematica using Euler’s method. ROS receives desired data using
Python and transmits it to simulated robots in Gazebo. Feedback is relayed back
to Mathematica through ROS using Python.

2. We must create a workspace to hold our packages. To create a workspace,
run the following terminal commands:

$ mkdir -p ~/my_ros_pkgs/src

$ cd ~/my_ros_pkgs

$ catkin_make

$ echo "source ~/my_ros_pkgs/devel/setup.bash" >> ~/.bashrc

The final command allows the terminal to directly run ROS programs.

6.2 Installing the Hector Quadrotor Software

1. Hector seems to be the most documented and supported quadrotor sim-
ulation software for ROS/Gazebo. Unfortunately, the packages aren’t all
available in the linux installation database for ROS Kinetic. We used an
online script to make it run anyway.

2. Download the file installhectorquadrotor.bash, and save it.

3. Move the file into the src directory of your catkin workspace (e.g., if your
workspace is ~/my_ros_pkgs, then copy the file into ~/my_ros_pkgs/src)

4. From the src directory, run the following commands in the terminal:

$ chmod +x hectorquadrotorinstallation.bash

$ ./hectorquadrotorinstallation.bash

5. Enter your password and/or type Y when prompted.

6. Once the process is finished, run the following:

$ cd ..

$ catkin_make

$ source devel/setup.bash

$ sudo apt-get install ros-kinetic-teleop-twist-keyboard

$ roslaunch hector_quadrotor_gazebo quadrotor_empty_world.launch

A quadrotor in an empty world should spawn.

7. Now in a new terminal:

$ source devel/setup.bash

$ rosservice call \enable_motors true

$ rosrun teleop_twist_keyboard teleop_twist_keyboard.py

8. Use the keyboard to fly the drone around!
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6.3 Running Multiple Hector Quadrotors

1. Create a new package in your catkin workspace (I called it multi_hector).

2. Copy the launch folder and the urdf folder from hector_quadrotor/hector_quadrotor_gazebo

into the multi_hector folder.

3. Download createhectorlaunchfile.py (Appendix B) and put it in the
multi_hector/launch folder.

4. Download multihectorListener.py and multihectorPublisher.py (Ap-
pendix B) and put them in the multi_hector/src folder.

5. Download enablemotors.bash (Appendix B) and put it in your main
catkin workspace folder.

6. Go to a terminal and run the following:

$ cd ~/my_ros_pkgs

$ catkin_make

$ source devel/setup.bash

$ rosrun multi_hector createhectorlaunchfile.py 10 (for 10 robots,

adjust as necessary)

$ roslaunch multi_hector multi_quadrotor_world10.launch

7. Now in a new terminal:

$ cd ~/my_ros_pkgs

$ source devel/setup.bash

$ ./enablemotors.bash

... wait while motors are enabled ...

$ rosrun multi_hector multihectorListener.py 10 (for 10 robots,

adjust as necessary)

8. And in another new terminal:

$ cd ~/my_ros_pkgs

$ source devel/setup.bash

$ rosrun multi_hector multihectorPublisher.py 10 (for 10 robots,

adjust as necessary)

9. Now the robots are listening for commands, which you can issue by running
the Mathematica file multi_hector_control.nb, printed in Appendix A.

Figure 19 shows the simulated robotic swarm in action.
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Appendix A Mathematica Code

We have made extensive use of Wolfram Mathematica to visualize our results.
Attached are several pieces of code which we used to simulate swarms in flat

35

https://doi.org/10.1080/00207179208934253
https://doi.org/https://doi.org/10.1016/j.physd.2016.11.008
https://doi.org/https://doi.org/10.1016/j.physd.2016.11.008
https://doi.org/10.1103/physreve.63.017101
https://doi.org/10.1016/j.nonrwa.2013.12.008
https://doi.org/10.1016/j.nonrwa.2013.12.008
https://doi.org/10.1109/TCT.1972.1083562
https://doi.org/10.1007/bfb0085364


space and curved space.
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Spherical Swarming
This code generates a parabolic potential swarm on a sphere, using 
the methods described in the paper. 

First, we initialize all necessary parameters.

In[1]:= ClearAll["Global`*"] (* Clear all variables and definitions *)

numofbots = 20; (* Number of agents *)

dim = 2; (* Dimension *)

totaltime = 100; (* Total time to simulate for *)

initpos = RandomReal[{1, 1.5}, {numofbots, dim}];

(* Initial positions, generated randomly *)

initvel = RandomReal[{-.1, 0.1}, {numofbots, dim}];

(* Initial velocities, generated randomly *)

sphereRadius = 3;

(* Distance function - depends on the metric tensor,

and difficult to calculate in general*)

dist[pos1_, pos2_] := sphereRadius * ArcCos[Sin[pos1[[2]]] * Sin[pos2[[2]]] +

Cos[pos1[[2]]] * Cos[pos2[[2]]] * Cos[pos1[[1]] - pos2[[1]]]]

u[pos1_, pos2_] := dist[pos1, pos2]^2; (* Potential function,

based on distance function*)

g = {{sphereRadius^2 * Cos[x[2]]^2, 0}, {0, sphereRadius^2}};

(* Metric tensor for spherical surface *)

ginv = Inverse[g]; (* Inverse of the metric tensor *)

christoffel[a_, i_, j_] := 1  2 * SumInverse[g][[a]][[k]] *

D[g[[i, k]], x[j]] + D[g[[j, k]], x[i]] - D[g[[i, j]], x[k]], {k, 2};

(* Christoffel symbols for the space *)

Next, we use these parameters to generate the equations of motion.

In[13]:= eqns = TableWith{i = i}, Table[r[i][j]'[t] ⩵ v[i][j][t], {j, dim}],

Tablev[i][j]'[t] ⩵ 1 - Sumv[i][k][t] * v[i][l][t] * g[[k, l]] /. Table[

x[ii] → r[i][ii][t], {ii, dim}], {k, dim}, {l, dim} * v[i][j][t] -

1  numofbots * SumSumginv[[j, jj]] /. Table[x[ii] → r[i][ii][t], {ii, dim}] *

D[u[Table[r[i][k][t], {k, dim}], Table[r[ii][k][t], {k, dim}]],

r[i][jj][t]], {jj, dim}, {ii, numofbots} -

Sumchristoffel[j, k, l] /. Table[x[jj] -> r[i][jj][t], {jj, dim}] *

v[i][k][t] * v[i][l][t], {k, dim}, {l, dim},

{j, dim}, Table[r[i][j][0] ⩵ initpos[[i]][[j]], {j, dim}],

Table[v[i][j][0] ⩵ initvel[[i]][[j]], {j, dim}]

, {i, numofbots}; (* Equations for the model *)

unknownFun = Table[r[i][j], {i, numofbots}, {j, dim}];

(* unknowns for the model: positions of each agent *)

We solve the resulting second-order differential equation.
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In[15]:= sol = First@NDSolve[eqns, unknownFun, {t, 0, totaltime},

"Method" → {"EquationSimplification" → {Automatic, "TimeConstraint" → 10}}];

(* Solve the diff eq *)

swarmpos = unknownFun /. sol; (* calculate the unknowns given the solution *)

We create parameters for our animation.

In[17]:= project[vec_] :=

{Cos[vec[[2]]] * Cos[vec[[1]]], Cos[vec[[2]]] * Sin[vec[[1]]], Sin[vec[[2]]]};

(* Define projection onto spherical surface *)

funddom[t_] :=

Show[{Graphics[Table[Point[Table[swarmpos[[i]][[j]][t], {j, dim}]], {i, numofbots}],

PlotRange → {{-π, π}, {-π, π}}, Axes → True]}];

(* Define animation on fundamental domain *)

manif[t_] := Show[{Graphics3D[{Sphere[],

Table[Point[project[Table[swarmpos[[i]][[j]][t], {j, dim}]]], {i, numofbots}]},

PlotRange → {{-1, 1}, {-1, 1}, {-1, 1}}, ViewPoint → {1, 1, 1}, ImageSize → Large]}]

(* Define animation on spherical surface *)

Finally, we display our animation.

In[20]:= Animate[GraphicsGrid[{{funddom[t], manif[t]}}], {t, 0, totaltime}]

(* Display both animations side-by-side *)

Out[20]=

t

2     sphereswarmpublic.nb
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Hyperbolic Swarming
This code generates a parabolic potential swarm on the hyperbolic 
plane, using the methods described in the paper.

First, we initialize all necessary parameters.

In[39]:= ClearAll["Global`*"] (* Clear all variables and definitions *)

numofbots = 20; (* Number of agents *)

dim = 2; (* Dimension *)

totaltime = 30; (* Total time to simulate for *)

initpos = RandomReal[{0.2, 1}, {numofbots, dim}] - Table[{.4, 0}, {i, numofbots}];

(* Initial positions *)

initvel = RandomReal[{0, 0}, {numofbots, dim}]; (* Initial velocities *)

(* Distance function - depends on the metric tensor,

and difficult to calculate in general*)

dist[pos1_, pos2_] :=

2 * LogSqrtpos2[[1]] - pos1[[1]]^2 + pos2[[2]] - pos1[[2]]^2 + Sqrt

pos2[[1]] - pos1[[1]]^2 + pos2[[2]] + pos1[[2]]^2 

2 * Sqrt[pos1[[2]] * pos2[[2]]];

u[pos1_, pos2_] := dist[pos1, pos2]^2; (* Potential function,

based on distance function*)

g = 1  x[2]^2, 0, 0, 1  x[2]^2; (* Metric tensor for hyperbolic space *)

ginv = Inverse[g]; (* Inverse of the metric tensor *)

christoffel[a_, i_, j_] := 1  2 * SumInverse[g][[a]][[k]] *

D[g[[i, k]], x[j]] + D[g[[j, k]], x[i]] - D[g[[i, j]], x[k]], {k, 2};

(* Christoffel symbols for the space *)

Next, we use these parameters to generate the equations of motion.

In[50]:= eqns = TableWith{i = i}, Table[r[i][j]'[t] ⩵ v[i][j][t], {j, dim}],

Tablev[i][j]'[t] ⩵ 1 - Sumv[i][k][t] * v[i][l][t] * g[[k, l]] /. Table[

x[ii] → r[i][ii][t], {ii, dim}], {k, dim}, {l, dim} * v[i][j][t] -

1  numofbots * SumSumginv[[j, jj]] /. Table[x[ii] → r[i][ii][t], {ii, dim}] *

D[u[Table[r[i][k][t], {k, dim}], Table[r[ii][k][t], {k, dim}]],

r[i][jj][t]], {jj, dim}, {ii, numofbots} -

Sumchristoffel[j, k, l] /. Table[x[jj] -> r[i][jj][t], {jj, dim}] *

v[i][k][t] * v[i][l][t], {k, dim}, {l, dim},

{j, dim}, Table[r[i][j][0] ⩵ initpos[[i]][[j]], {j, dim}],

Table[v[i][j][0] ⩵ initvel[[i]][[j]], {j, dim}]

, {i, numofbots}; (* Equations for the model *)

unknownFun = Table[r[i][j], {i, numofbots}, {j, dim}];

(* unknowns for the model: positions of each agent *)

We solve the resulting second-order differential equation.
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In[52]:= sol = First@NDSolve[eqns, unknownFun, {t, 0, totaltime},

"Method" → {"EquationSimplification" → {Automatic, "TimeConstraint" → 10}}];

(* Solve the diff eq *)

swarmpos = unknownFun /. sol; (* Calculate the unknowns given the solution *)

We animate the results on the hyperbolic half-plane.

In[54]:= (*Animation on fundamental domain*)

Animate[

Show[{Graphics[Table[Point[Table[swarmpos[[i]][[j]][t], {j, dim}]], {i, numofbots}],

PlotRange → {{-1, 1}, {0, 1}}, Axes → True]}], {t, totaltime}, AnimationRate → .5]

Out[54]=
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Oval Swarming on Flat Metric
This code generates a parabolic potential swarm with oval-shaped 
limit cycles, using the methods described in the paper. 

First, we initialize all necessary parameters.

In[56]:= ClearAll["Global`*"] (* Clear all variables and definitions *)

numofbots = 20; (* Number of agents *)

dim = 2; (* Dimension *)

totaltime = 30; (* Total time to simulate for *)

initpos = RandomReal[{1, 2}, {numofbots, dim}]; (* Initial positions *)

initvel = RandomReal[{-2, 2}, {numofbots, dim}]; (* Initial velocities *)

(* Distance function - depends on the metric tensor,

and difficult to calculate in general*)

g = {{1, 2}, {0, 2}}; (* Metric tensor for hyperbolic space *)

dist[pos1_, pos2_] := pos1 - pos2.g.pos1 - pos2 (* Distance function *)

u[pos1_, pos2_] := dist[pos1, pos2];

(* Potential function, based on distance function*)

ginv = Inverse[g]; (* Inverse of the metric tensor *)

christoffel[a_, i_, j_] := 1  2 * SumInverse[g][[a]][[k]] *

D[g[[i, k]], x[j]] + D[g[[j, k]], x[i]] - D[g[[i, j]], x[k]], {k, 2};

(* Christoffel symbols for the space *)

Next, we use these parameters to generate the equations of motion.

In[67]:= eqns = TableWith{i = i}, Table[r[i][j]'[t] ⩵ v[i][j][t], {j, dim}],

Tablev[i][j]'[t] ⩵ 1 - Sumv[i][k][t] * v[i][l][t] * g[[k, l]] /. Table[

x[ii] → r[i][ii][t], {ii, dim}], {k, dim}, {l, dim} * v[i][j][t] -

1  numofbots * SumSumginv[[j, jj]] /. Table[x[ii] → r[i][ii][t], {ii, dim}] *

D[u[Table[r[i][k][t], {k, dim}], Table[r[ii][k][t], {k, dim}]],

r[i][jj][t]], {jj, dim}, {ii, numofbots} -

Sumchristoffel[j, k, l] /. Table[x[jj] -> r[i][jj][t], {jj, dim}] *

v[i][k][t] * v[i][l][t], {k, dim}, {l, dim},

{j, dim}, Table[r[i][j][0] ⩵ initpos[[i]][[j]], {j, dim}],

Table[v[i][j][0] ⩵ initvel[[i]][[j]], {j, dim}]

, {i, numofbots}; (* Equations for the model *)

unknownFun = Table[r[i][j], {i, numofbots}, {j, dim}];

(* unknowns for the model: positions of each agent *)

We solve the resulting second-order differential equation.

In[71]:= sol = First@NDSolve[eqns, unknownFun, {t, 0, totaltime},

"Method" → {"EquationSimplification" → {Automatic, "TimeConstraint" → 10}}];

(* Solve the diff eq *)

swarmpos = unknownFun /. sol; (* calculate the unknowns given the solution *)
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Finally, we display our animation.

In[73]:= (* Animation on "stretched" space with flat metric *)

Animate[

Show[{Graphics[Table[Point[Table[Re[swarmpos[[i]][[j]][t]], {j, dim}]], {i, numofbots}],

PlotRange → {{-4, 4}, {-4, 4}}, Axes → True]}], {t, totaltime}, AnimationRate → .5]

Out[73]=
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Multi-Hector Control
Run this document in your ROS workspace to control agents 
spawned with the multihector package.

ClearAll["Global`*"]

homepath = "~/my_ros_pkgs"; (* Directory to saveread files to and from *)

saveToFile[M_] := Export[FileNameJoin[{homepath, "dataExchangeMath2ROS.csv"}], M, "CSV"];

(*Format: [velX,velY,velZ,angVelX,angVelY,angVelZ]*)

loadFromFile := Import[FileNameJoin[{homepath, "dataExchangeROS2Math.csv"}]];

(*Format: [posX,posY,posZ,linVelX,linVelY,linVelZ,angVelX,angVelY,angVelZ,yaw]*)

numofbots := Length[dataoutput]; (* Number of agents *)

dim = 2; (* Dimension of the simulation *)

(* Parameters for the model *)

α = 1;

β = 5;

λ = 10;

c = 10  9;

l = 3  4;

h = 4; (* Step size *)

rtf = .18; (* Approximate real time factor of the system. Displayed in Gazebo *)

u[pos_] := c * ⅇ^-Sqrt[Sum[pos[[i]]^2 + .01, {i, 2}]]  l -

ⅇ^-Sqrt[Sum[pos[[i]]^2 + .01, {i, 2}]]; (* Swarm potential function *)

(* Gradient of potential function: *)

gradu[pos_] :=

Grad[u[Table[x[i], {i, 3}]], Table[x[i], {i, 3}]] /. Table[x[i] → pos[[i]], {i, 3}];

(* Measure the velocity from Gazebo. Note that Gazebo gives the

velocity in terms of global, not local coordinates. *)

velocityMeasured[data_] :=

Table[{data[[i]][[4]], data[[i]][[5]], data[[i]][[6]]}, {i, numofbots}]

(* Measure position *)

position[data_] :=

Table[{data[[i]][[1]], data[[i]][[2]], data[[i]][[3]]}, {i, Length[data]}];

(* Equation for the model *)

rhs[data_] :=

Tableα - β * Sum[data[[i]][[j]]^2, {j, 4, 6}] * Table[data[[i]][[j]], {j, 4, 6}] -

λ  numofbots * Sum[gradu[Table[data[[i]][[k]] - data[[j]][[k]], {k, 3}]],

{j, numofbots}] + {0, 0, 5 - data[[i]][[3]] - data[[i]][[6]]}, {i, numofbots}
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(* Find desired velocity, rotate it, and then format it to export *)

vDesired[data_] := velocityMeasured[data] + h * rtf * rhs[data];

vRotated[data_] := ParallelTable[

RotationMatrix[-data[[i]][[10]], {0, 0, 1}].vDesired[data][[i]], {i, Length[data]}];

commandMatrix[vec_] := Table[{vec[[i]][[1]], vec[[i]][[2]], vec[[i]][[3]], 0, 0, 0},

{i, Length[vec]}]

(* Run this to create the scheduled task *)

(* REMEMBER TO ENABLE THE MOTORS *)

RunScheduledTask[dataoutput = loadFromFile;

vmatrix = vRotated[dataoutput];

saveToFile[commandMatrix[vmatrix]];, h];

(* Run this to remove all scheduled tasks and stop the robots *)

RemoveScheduledTask[ScheduledTasks[]]

saveToFile[commandMatrix[Table[{0, 0, 0}, {i, numofbots}]]];

{}

(* Run this to time how long the process takes. Use a step size a little bigger than

the output. Make sure all the Gazebo processes are running when you do this,

or else this will underestimate the computation time.*)

AbsoluteTiming[dataoutput = loadFromFile;

vmatrix = vRotated[dataoutput];

saveToFile[commandMatrix[vmatrix]];][[1]]

3.38634

2     multi_hector_control.nb

Printed by Wolfram Mathematica Student Edition



Appendix B Python Code

installhectorquadrotor.bash

#!/bin/bash

#before running, move this file into your catkin workspace/src folder.

#after installation, cd into your catkin workspace main folder, then run

source devel/setup.bash

sudo apt-get install ros-kinetic-ros-control

sudo apt-get install ros-kinetic-gazebo-ros-control

sudo apt-get install ros-kinetic-unique-identifier

sudo apt-get install ros-kinetic-geographic-info

sudo apt-get install ros-kinetic-laser-geometry

sudo apt-get install ros-kinetic-tf-conversions

sudo apt-get install ros-kinetic-tf2-geometry-msgs

sudo apt-get install ros-kinetic-joy

git clone -b kinetic-devel https://github.com/tu-darmstadt-ros-pkg/

hector_quadrotor

git clone -b catkin https://github.com/tu-darmstadt-ros-pkg/

hector_localization

git clone -b kinetic-devel https://github.com/tu-darmstadt-ros-pkg/

hector_gazebo

git clone -b kinetic-devel https://github.com/tu-darmstadt-ros-pkg/

hector_models

git clone -b catkin https://github.com/tu-darmstadt-ros-pkg/hector_slam

sed -i -e ’s/option(USE_PROPULSION_PLUGIN "Use a model of the quadrotor

propulsion system"ON)/option(USE_PROPULSION_PLUGIN "Use a model of

the quadrotor propulsion system" OFF)/g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_gazebo/urdf/CMakeLists.txt

sed -i -e ’s/option(USE_AERODYNAMICS_PLUGIN "Use a model of the quadrotor

aerodynamics" ON)/option(USE_AERODYNAMICS_PLUGIN "Use a model of

the quadrotor aerodynamics" OFF)/g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_gazebo/urdf/CMakeLists.txt

# this is to deactivate warnings

sed -i -e ’s/add_dependencies(landing_action

hector_uav_msgs_generate_message_cpp)//g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_actions/CMakeLists.txt

sed -i -e ’s/add_dependencies(pose_action

hector_uav_msgs_generate_message_cpp)//g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_actions/CMakeLists.txt

sed -i -e ’s/add_dependencies(takeoff_action

hector_uav_msgs_generate_message_cpp)//g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_actions/CMakeLists.txt

sed -i -e ’s/add_dependencies(hector_quadrotor_controllers

hector_uav_msgs_generate_message_cpp)//g’ hector_quadrotor/

hector_quadrotor/hector_quadrotor_controllers/CMakeLists.txt
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cd ..

catkin_make

source devel/setup.bash
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createhectorlaunchfile.py

#!/usr/bin/env python

"""

Args: nBots

Returns: a launch file with nBots hector quadrotors

"multi_quadrotor_world_nBots.launch"

"""

import sys

import math

def createLaunchFile():

sideLength = int(math.sqrt(nBots)/2)+1

botPoses = [(i,j) for i in range(-sideLength,sideLength) for j in

range(-sideLength,sideLength)]

fileContent = ’’’<?xml version="1.0"?>

<launch>

<arg name="paused" default="false"/>

<arg name="use_sim_time" default="true"/>

<arg name="gui" default="true"/>

<arg name="headless" default="false"/>

<arg name="debug" default="false"/>

<arg name="model" default="$(find hector_quadrotor_description)/urdf/

quadrotor.gazebo.xacro" />

<include file="$(find gazebo_ros)/launch/empty_world.launch">

<arg name="paused" value="$(arg paused)"/>

<arg name="use_sim_time" value="$(arg use_sim_time)"/>

<arg name="gui" value="$(arg gui)"/>

<arg name="headless" value="$(arg headless)"/>

<arg name="debug" value="$(arg debug)"/>

</include>

\n

’’’

for i in range(1,nBots+1):

robot = ’’’<!-- BEGIN ROBOT {0}-->

<group ns="robot{0}">

<include file="$(find hector_quadrotor_gazebo)/launch/

spawn_quadrotor.launch">

<arg name="name" value="Robot{0}" />

<arg name="tf_prefix" value="robot{0}" />

<arg name="model" value="$(arg model)" />

<arg name="x" value="{1}"/>

<arg name="y" value="{2}" />

</include>

</group>

\n’’’.format(str(i),str(botPoses[i][0]),str(botPoses[i][1]))

fileContent = fileContent + robot

fileContent = fileContent+’’’</launch>’’’

launchFile = open(’multi_quadrotor_world{}.launch’.format(str(nBots))

,’w’)
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launchFile.write(fileContent)

launchFile.close()

if __name__ == ’__main__’:

try:

nBots = int(sys.argv[1])

except ValueError:

print "The ’nBots’ parameteter is required. \n Try ’***.py nBots

’"

sys.exit()

createLaunchFile()
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multihectorListener.py

#!/usr/bin/env python

"""

ABOUT:

This python script listens to the gazeboModelStates topic

to get actual positions and velocities of the bots in Gazebosim.

The velocities and positions are saved to a csv file.

Args:

nBots read from the command line

Returns:

We save the following info about each bot to the csv file

[posX,posY,posZ,velLin.x,velLin.y,velLin.z,velAngular.x,velAngular.y,

velAngular.z,yaw]

Each row contains the info about one bot.

Thus, if we are monitoring 5 bots, the csv will contain 5 rows.

How to execute this script:

1. Place this file in the folder with "filename.csv"

2. In the command line run

python fultibotListener.py nBots

"""

import os

import sys

import tempfile

import csv

import tf

import rospy

# Messages

from std_msgs.msg import String

from gazebo_msgs.msg import ModelStates

from nav_msgs.msg import Odometry

from geometry_msgs.msg import Point, Quaternion

filename = ’dataExchangeROS2Math.csv’

def callback(data):

#rospy.loginfo(rospy.get_caller_id() + ’%s’, data)

names = data.name

poseDictBots = {data.name[i] : data.pose[i] for i in range(nBots+1)}

twistDictBots = {data.name[i] : data.twist[i] for i in range(nBots+1)

}

#rospy.loginfo(’%s’, data.pose.pose.position.x)

with tempfile.NamedTemporaryFile(’w’, dir=os.path.dirname(filename),

delete=False) as fake_file:

with fake_file as fake_csv:

writer = csv.writer(fake_csv, delimiter=’,’)

49



for i in range(1,nBots+1):

orienX = poseDictBots["Robot"+str(i)].orientation.x

orienY = poseDictBots["Robot"+str(i)].orientation.y

orienZ = poseDictBots["Robot"+str(i)].orientation.z

orienW = poseDictBots["Robot"+str(i)].orientation.w

(roll, pitch, yaw) = tf.transformations.

euler_from_quaternion([orienX, orienY, orienZ,orienW])

velLin = twistDictBots["Robot"+str(i)].linear

velAngular = twistDictBots["Robot"+str(i)].angular

posX = poseDictBots["Robot"+str(i)].position.x

posY = poseDictBots["Robot"+str(i)].position.y

posZ = poseDictBots["Robot"+str(i)].position.z

odometryTuple = [posX,posY,posZ,velLin.x,velLin.y,velLin.z

,velAngular.x,velAngular.y,velAngular.z,yaw]

writer.writerow(odometryTuple)

tempFileName = fake_file.name

os.rename(tempFileName, filename)

def listener():

# In ROS, nodes are uniquely named. If two nodes with the same

# name are launched, the previous one is kicked off. The

# anonymous=True flag means that rospy will choose a unique

# name for our ’listener’ node so that multiple listeners can

# run simultaneously.

rospy.init_node(’listener’, anonymous=True)

#Reading the position directly from Gazebo

rospy.Subscriber(’/gazebo/model_states’, ModelStates, callback)

# Use the following piece to get the position from Odometry. Note

that it is not very accurate.

#rospy.Subscriber(’/odom’, Odometry, callbackOdometry)

rospy.spin()

if __name__ == ’__main__’:

try:

nBots = int(sys.argv[1])

except ValueError:

print "The ’nBots’ parameteter is required. \n Try ’***.py nBots

’"

sys.exit()

listener()

50



multihectorPublisher.py

#!/usr/bin/env python

"""

Args: in the command line run

python multibotPublisher.py nBots

Returns:

This python scripts loops indefinitely and reads from the csv file "

pubRate" times

per second and publishes the velocity commands to ROS /mobile_base/

commands/velocity for each bot.

The input file must use the csv format with each row representing the

velocities

for one bot. Each row should follow the format

[velX,velY,velZ,angVelX,angVelY,angVelZ]

"""

import time

import sys

import csv

# ROS Interface

import rospy

from geometry_msgs.msg import Twist

from geometry_msgs.msg import Vector3

fwdVel = 0.0

angVel = 0.0

pubRate = 30

def talker():

pub = [None]*nBots

for i in range(nBots):

topicName = ’robot’+str(i+1)+’/cmd_vel’

pub[i] = rospy.Publisher(topicName,Twist,queue_size=10)

rospy.init_node(’act’, anonymous=True)

rate = rospy.Rate(pubRate) #hz

while not rospy.is_shutdown():

with open(’dataExchangeMath2ROS.csv’, ’r’) as f:

try:

reader = csv.reader(f)

velList = list(reader) # list of the form [velX,velY,

velZ,angVelX,angVelY,angVelZ]

print "New cmnd", velList

print "nBots:", nBots

for i in range(0,nBots):

linX = float(velList[i][0])

linY = float(velList[i][1])
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linZ = float(velList[i][2])

angX = float(velList[i][3])

angY = float(velList[i][4])

angZ = float(velList[i][5])

linear = [linX,linY,linZ]

angular = [angX,angY,angZ]

pub[i].publish(Twist(Vector3(linear[0],linear[1],

linear[2]),Vector3(angular[0],angular[1],

angular[2])))

except:

pass

rate.sleep()

#time.sleep(0.1)

if __name__ == ’__main__’:

try:

nBots = int(sys.argv[1])

except ValueError:

print "The ’nBots’ parameteter is required. \n Try ’***.py nBots

’"

sys.exit()

try:

talker()

except rospy.ROSInterruptException:

pass
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enablemotors.bash

#!/bin/bash

for i in ‘seq 1 $1‘; do

rosservice call /robot$i/enable_motors true

done
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