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Abstract

Swarms have been studied both in an attempt to understand natural
processes and to control systems of autonomous agents. These swarm
models are typically based on gradient systems of differential equations.
This honors project examines the limit behavior of these systems, and
extensions of these systems to Riemannian manifolds.
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1 Introduction

Swarming is a phenomenon observed in almost every type of living being [1,
2, 3]. Many models have been proposed for swarms, both Eulerian models
(using continuous dynamics) and Lagrangian models (predicting the behavior
of individual agents) [4]. More recently, swarm dynamics have been studied to
control robotic agents, especially by the United States military [5, 6]. With this
application in mind, we choose to study Lagrangian models as a means to control
agents individually. Among Lagrangian models, the most commonly studied
swarms are known as potential or gradient swarms: swarms which attempt to
minimize a potential function by moving into a desirable configuration [7].

Our work is primarily concerned with the nonlinear parabolic potential
model for a swarm. In the model, N agents with position vectors ri obey
the following equation of motion:

r̈i = (1− ṙi · ṙi)ṙi − ri +
1

N

N∑
j=1

rj (1)

This model has been studied numerically before [8, 9], but to our knowledge
there does not yet exist a rigorous mathematical characterization of its limit
behavior for any number of agents. We are motivated by a desire to understand
the system from a mathematical point of view.

We note that Haraux and Jendoubi [10] investigated second-order systems
of the form:

r̈i = f(ṙi)−
1

N

N∑
j=1

∇riU(ri, rj),

where f : Rn → Rn is a vector-valued function of the agent’s velocity and
U : Rn → R is a potential function which is smooth and radially unbounded.

If f(ṙi) · ṙi is negative-definite, the system will converge to a limit configu-
ration which minimizes U locally. We would like to stress that this negative-
definiteness condition does not hold for Equation (1).

Previous numerical experiments have shown that the system either converges
to a rotating circular limit cycle with a fixed center of mass, or the agents clump
together and move along a straight line. We will show that this is not always the
case, and the behavior is sometimes more nuanced (see Section 3.4). Our goal
is to investigate stability of the system’s circular rotating state. Notice that the
system is translation-invariant, and that when the center of mass is fixed, the
system decouples into N independent equations.

To understand the decoupled state, we first investigate the behavior of a
simpler system, which we call the simplified parabolic potential model. It con-
tains one agent with position vector r, which is attracted to the origin as though
it is the center of mass. This yields the following equation of motion:

r̈ = (1− ṙ · ṙ)ṙ− r (2)

We prove the following about the simplified parabolic potential model:

Theorem. Suppose r : R→ Rn is a solution of Equation (2).

(i) If r and ṙ are parallel at some instant, they remain parallel and follow a
unique limit cycle (Theorem 4).
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(ii) The origin of the phase space is the unique equilibrium point of the system,
and it is unstable (Theorem 5).

(iii) If r and ṙ are not parallel at some instant, then the system converges
to a circular limit cycle of radius 1 with speed 1 centered on the origin
(Theorem 6).

In the next result, we do local stability analysis for the original system with
two agents.

Theorem. Let N = 2. Circular limit cycles satisfying Equation (1) with sta-
tionary center of mass are locally stable up to translation (Theorem 7).

The other focus of our project is an extension of the parabolic potential
model to Riemannian manifolds. The goal was to find a swarm model which
would exhibit similar behavior to the parabolic model on the manifold: the
limit cycles would be circular with respect to the Riemannian metric, the speed
of translation would be constant, and the agents would move along geodesics
if there were no interaction. As far as we know, this has not been studied
before. In Section 4.1, we present such a model for any gradient swarm. Our
observations through numerical simulation have shown that the behavior of a
swarm in Euclidean space and the same swarm on a manifold tend to be similar.

The structure of the paper follows. In Section 2 we cover some of the theory
necessary for our results. In Section 3 we define and characterize some swarms
in Euclidean space. In Section 3.3, we characterize the global behavior of a sim-
plified, decoupled system with one agent by constructing an explicit Lyapunov
function for the system and using Lasalle’s invariance principle. In Section 3.4,
we prove that the “typical” limit behavior of a rotating state is locally stable for
a system of two agents using Lyapunov’s indirect (or linearization) method. In
Section 4.1, we use ideas from differential geometry to generate gradient swarms
on Riemannian manifolds. We present a swarm model whose limit cycles are
precisely the circles (the set of points equidistant from their common center) on
the manifold.

2 Lyapunov Stability Theory

Much of our work relies on Lyapunov stability theory. In particular, we use
Lasalle’s invariance principle to characterize the behavior of the single-agent
system, and Lyapunov’s indirect (linearization) method to characterize the local
behavior of multi-agent systems.

Theorem 1 (Lasalle). Let an autonomous dynamical system defined on a region
D ⊂ Rn be given, with the equation of motion:

ẋ = f(x) (3)

Where f : D → Rn is a locally Lipschitz map. Let Ω ∈ D be a compact set that
is positively invariant with respect to (3). Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 for all trajectories in Ω. Let E be the
set of all points in Ω where V̇ (x) = 0. Let M be the largest invariant set in E.
Then every solution starting in Ω approaches M as t→∞.
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Proof. This proof adapted from a proof published in Nonlinear Systems, by
Khalil [11].

Let x(t) be a solution of (3) starting in Ω. V̇ (x) ≤ 0 in Ω, and trajectories
beginning in Ω will remain within Ω for all time, since Ω is invariant. Therefore,
V (x(t)) is a decreasing function of t. V (x) is continuous on the compact set Ω,
so it is bounded from below on Ω. Therefore, V (x(t)) has a limit a as t → ∞.
Ω is compact, so it is closed, so the positive limit set L+ is in Ω. For any p in
L+, there is a sequence tn such that tn → ∞ and x(tn) → p as n → ∞. By
continuity of V (x), V (p) = limn→∞ V (x(tn)) = a. Therefore, V (x) = a on L+.
Thus:

L+ ⊂M ⊂ E ⊂ Ω

Since x(t) is bounded, x(t) approaches (becomes arbitrarily close to a member
of) L+ as t→∞. Therefore, x(t) approaches M as t→∞.

We also rely on the following theorems about linearized systems:

Theorem 2. For the linear system ẋ = Ax, the equilibrium point x = 0 is stable
if and only if all eigenvalues of A satisfy Re(λi) ≤ 0 and for every eigenvalue
with Re(λi) = 0 and algebraic multiplicity qi ≥ 2, rank(A−λiI) = n− qi, where
n is the dimension of x. The equilibrium point x = 0 is (globally) asymptotically
stable if and only if all eigenvalues of A satisfy Re(λi) < 0.

For a proof, see Khalil [11], Theorem 4.5.

Theorem 3 (Lyapunov’s indirect (linearization) method). Let x = 0 be an
equilibrium point of the nonlinear system

ẋ = f(x)

where f : D → Rn is continuously differentiable and D is a neighborhood of the
origin. Let

A =
∂f

∂x
(x)

∣∣∣∣
x=0

Then:

1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(λi) > 0 for one or more eigenvalues of A.

For a proof, see Khalil [11], Theorem 4.7.

3 Gradient Swarm Models

The dynamical systems we will study will all be first or second-order autonomous
systems. A swarm is a dynamical system of coupled agents. Agents each have a
position vector, and some equation of motion which depends on the position of
other agents. All swarms we study are homogeneous: all agents have the same
equation of motion.

We define an equilibrium configuration of a swarm of agents with positions
ri as a list of position vectors (r1, r2, . . . , rN ) such that agents located at these
positions will all remain motionless.
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For some functions f : Rn → Rn and U : Rn → R, Haraux and Jendoubi [10]
define first- and second-order gradient systems respectively as follows:

ẋ = −∇U(x) (4)

ẍ = −f(x)−∇U(x) (5)

Let a dynamical system of N agents in Rn be given. A potential function is a
function U : R2n → R that assigns a value, or potential, to two agents depending
on their position. Examples of commonly-studied potential functions are:

U(ri, rj) = ‖ri − rj‖2 (parabolic potential)

U(ri, rj) =
10

9
exp

(
−4‖ri − rj‖

3

)
− exp(−‖ri − rj‖) (Morse potential)

We work with potential functions satisfying several criteria:

1. U is smooth (infinitely differentiable).

2. U is bounded below.

3. All sublevel sets of U are bounded (sublevel sets are sets of the form
{x : U(x) < k} for some k ∈ R).

3.1 First-Order

A first-order gradient swarm is a dynamical system of N agents in n dimensions
satisfying the following equation of motion:

ṙi = − 1

N

N∑
j=1

∇riU(ri, rj)

Where ∇ri signifies taking the gradient with respect to ri.
We define the swarm potential, S, as the sum of the potential functions for

every pair of agents. Mogilner et al. [4] showed that one-dimensional first-order
gradient swarms always converge to an equilibrium configuration if U satisfies
the properties of a potential function, and produced a way to prove this in
arbitrarily many dimensions. Alternatively, we may view the positions of all
agents as one large vector R, and the swarm as a large gradient system of the
form:

Ṙ = −∇S(R)

It is well-known that systems like this converge to equilibrium points if S is
bounded below, and all sublevel sets of S are bounded.

3.2 Second-Order

A second-order gradient swarm is a dynamical system of N agents in n dimen-
sions satisfying the following equation of motion:

r̈i = f(ṙi)−
1

N

N∑
j=1

∇riU(ri, rj)

7



-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 1: Limit behavior of the parabolic potential model.

Where f : Rn → Rn is a vector-valued function of the agent’s velocity.
In the case where f(ṙi)·ṙi is negative-definite, a second-order gradient swarm

will converge to a limit configuration. Furthermore, the set of limit configura-
tions is equal to the set of limit configurations of the first-order system with the
same potential function.

Mogilner et al. [4] argued that this is true because such second-order gradient
systems are similar to first-order systems at low speeds [4]. These swarms are
high-dimensional cases of the second-order gradient systems studied by Haraux
and Jendoubi [10], and therefore will converge to minima of U .

If f(ṙi) · ṙi is not negative-definite, second-order gradient swarms do not
necessarily converge to equilibrium configurations. An example of a gradient
swarm which does not necessarily converge is the nonlinear parabolic potential
model:

r̈i = (1− ṙi · ṙi)ṙi −
1

N

N∑
j=1

∇ri‖ri − rj‖2 (6)

We have observed through numerical simulation that typically (though not al-
ways) the center of mass of the system converges to an equilibrium point, and
all agents converge to circular limit cycles around the point (pictured in Figure
6). While the system has been examined (e.g. by Ebeling and Schweitzer [8]),
we have never seen proofs of stability concerning this limit behavior.

3.3 Simplified Parabolic Model

In an attempt to understand the swarm, we construct a simplified model with
one agent centered on the origin. The system’s behavior is given by the following
equation of motion:

r̈ = (1− ṙ · ṙ)ṙ− r (7)

Theorem 4 (Original). If r and ṙ are parallel at some instant, then they remain
parallel and follow a unique limit cycle.
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Proof. First, suppose that r and ṙ are parallel. I.e., for some unit vector r̂, we
have:

r = ar̂

ṙ = br̂

Then (7) yields:
r̈ = (b− b3 − a)r̂

The acceleration is parallel to r̂, so the entire system is constrained to the line
kr̂. We can rewrite differential equations for a and b:

ȧ = b

ḃ = b− b3 − a
(8)

We may rewrite this system as a Lienard system. Use the substitution:

x = b

y = −a
f(x) = x3 − x

Then (8) becomes:

ẋ = y − f(x)

ẏ = −x
(9)

Liénard [12] investigated this type of system. This system is a special case
studied by Lins, Melo, and Pugh [13]. It has a unique stable limit cycle if:

1. f is continuous,

2. f is odd,

3. f has a unique positive root at x = k, and

4. f is monotone increasing for x > k.

f satisfies all four properties with k = 1, so a unique stable limit cycle exists if
r and ṙ are parallel.

Theorem 5 (Original). a = 0, b = 0 is the unique equilibrium point of the
one-dimensional system, and it is unstable.

Proof. Suppose ȧ = ḃ = 0. Then b = 0, and b − b3 − a = −a = 0. So (0, 0) is
the unique equilibrium point.

To see that it is unstable, use Lyapunov’s indirect method [14]. The Jacobian
of the system at (0, 0) is:

J =

(
0 1
−1 1

)
Which has eigenvalues 1

2±
√
3
2 . Since the real parts of all eigenvalues are positive,

the equilibrium point is unstable.
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Theorem 6 (Original). Suppose that r and ṙ are not parallel. Then the system
converges to a circular limit cycle of radius 1 with speed 1 centered on the origin.

Proof. We define scalars u, v and w using the following substitution:

u = r · r
v = ṙ · ṙ
w = ṙ · r

(10)

Differentiating each scalar, we have:

u̇ = 2ṙ · r = 2w

v̇ = 2r̈ · ṙ = 2(1− ṙ · ṙ)ṙ · ṙ− 2r · ṙ = 2v(1− v)− 2w

ẇ = r̈ · r + ṙ · ṙ = (1− ṙ · ṙ)ṙ · r− r · r + ṙ · ṙ = w(1− v)− u+ v

(11)

This system is also subject to the following constraints:

u ≥ 0 because it is the squared norm of a vector.

v ≥ 0 because it is the squared norm of a vector.

w2 ≤ uv by the Cauchy-Schwarz Inequality.

(12)

In the case where w2 = uv, we have (ṙ · r)2 = (r · r)(ṙ · ṙ), so the two vectors are
parallel. In this case, the system reduces to the one-dimensional case. If u = 0
or v = 0, it must be the case that w2 = uv, so we also have the one-dimensional
case. If we have u = v = 0, we have the unstable equilibrium point in the
one-dimensional case. Therefore, we are only interested in the behavior within
the following region, which we call Ω:

u > 0

v > 0

w2 < uv

(13)

Define the Lyapunov function L : Ω→ R of the system as:

L = u+ v − log(uv − w2)

Since uv − w2 > 0 in Ω, L is defined throughout Ω. It is worth noting that the
Lyapunov function does not correspond to any actual physical quantity. It is
merely a function that has the properties we require.

L is radially unbounded. I.e. L → ∞ as |(u, v, w)| → ∞. To see this, note
that:

L = u+ v − log(uv − w2) ≥ (u− log(u)) + (v − log(v))

Since u− log(u) and v − log(v) are unbounded above, L is radially unbounded.
Furthermore, L approaches infinity on the boundaries of Ω. For some fixed
values of u and v, as w2 → uv from below, log(uv − w2) → −∞, so L → ∞.
Together, this means that all sublevel sets of L are bounded.

For some constant k, we denote the sublevel set {(u, v, w) : L(u, v, w) ≤ k}
by Ω(k). Since L is continuous, and all sets L ≤ k are closed, all Ω(k) are closed.
Therefore, all Ω(k) are compact.
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L has one stationary point in Ω, at (1, 1, 0). To show this, take the gradient,
and set it equal to zero:

∇L =

1− v
uv−w2

1− u
uv−w2

2w
uv−w2

 =

0
0
0


This yields:

v = uv − w2

u = uv − w2

w = 0

⇒
(1− u)v = 0

(1− v)u = 0

w = 0

(14)

Since u and v are positive in Ω, the only solution is (u, v, w) = (1, 1, 0).
(1, 1, 0) is a minimum. To show this, we compute the Hessian of L:

H =


v2

(uv−w2)2
uv

(uv−w2)2
− 1

uv−w2 − 2vw
(uv−w2)2

uv
(uv−w2)2

− 1
uv−w2

u2

(uv−w2)2
− 2uw

(uv−w2)2

− 2vw
(uv−w2)2

− 2uw
(uv−w2)2

4w2

(uv−w2)2
+ 2

uv−w2


At the point (1, 1, 0), this becomes:

H =

1 0 0
0 1 0
0 0 2


Since this is positive-definite, (1,1,0) is a minimum. Since it is the only

stationary point in Ω, and L→∞ on the boundary of Ω, it is a global minimum.
For all trajectories beginning in Ω:

dL

dt
= ∇L ·

u′(t)v′(t)
w′(t)


=

1− v
uv−w2

1− u
uv−w2

2w
uv−w2

 ·
 2w

2v(1− v)− 2w
w(1− v)− u+ v


=

(
2w − 2vw

uv − w2

)
+

(
2v(1− v)− 2w − 2uv(1− v)

uv − w2
+

2uw

uv − w2

)
+

(
2w2(1− v)

uv − w2
− 2uw

uv − w2
+

2vw

uv − w2

)
= 2v(1− v)− 2(uv − w2)(1− v)

uv − w2

= −2(1− v)2

(15)

So L is decreasing on any trajectory beginning in Ω. Therefore, L is indeed
a Lyapunov function, and all sublevel sets of L are invariant [14].

We have, for any Ω(k), Ω(k) is closed, bounded, and invariant. Given any
trajectory (u(t), v(t), w(t), we may apply Theorem 1 on Ω(L(u(0), v(0), w(0))).
Theorem 1 guarantees that (u, v, w) approaches the largest invariant set inside
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which L̇(u, v, w) = 0. All that remains is to show that this set is equal to the
point (1, 1, 0).

Since (1, 1, 0) is a global minimum of L, it is in every nonempty sublevel set
of L. Suppose that L̇ = 0 for some trajectory (u(t), v(t), w(t)). Then:

−2(1− v(t))2 = 0⇒ v(t) = 1 for all t > 0

So by equation (11):

v̇(t) = 0⇒ 2v(t)(1− v(t))− 2w(t) = 0⇒ w(t) = 0 for all t > 0

So:

ẇ(t) = 0⇒ w(t)(1− v(t))− u(t) + v(t) = 0⇒ u(t) = 1 for all t > 0

So the only invariant set in any Ω(k) with V̇ (u(t), v(t), w(t)) = 0 is the point
(1, 1, 0).

Therefore, by Theorem 1, every trajectory beginning in Ω converges to the
point (1, 1, 0).

So r · r→ 1, ṙ · ṙ→ 1, and ṙ · r→ 0.
So if r(0) and ṙ(0) are not parallel, the system converges to a circular limit

cycle of radius 1 with speed 1 centered on the origin.

3.4 Two-Agent Model

We next examine the behavior of two coupled agents, with position vectors r1
and r2. The agents have equations of motion:

r̈1 = (1− ṙ1 · ṙ1)ṙ1 −
1

2
r1 +

1

2
r2

r̈2 = (1− ṙ2 · ṙ2)ṙ2 −
1

2
r2 +

1

2
r1

(16)

We have not characterized the behavior of the two-agent system globally. There
exist at least three behaviors which we have seen in simulation: a one-dimensional
oscillation, a rotating behavior, and a translating behavior, pictured in Figure
2.

We have shown that the rotating behavior is locally stable by rewriting the
system and using Lyapunov’s indirect (linearization) method.

Theorem 7 (Original). Rotating behavior is locally stable for a parabolic po-
tential model of two agents.

Proof. We begin by reformulating the system using the following substitution:

u = |r1 − r2|
v1 = |ṙ1|
v2 = |ṙ2|
θ1 = angle between ṙ1 and (r1 − r2)

θ2 = angle between ṙ2 and (r2 − r1)

(17)

We now differentiate each term.
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Figure 2: Different behaviors of a swarm of two agents. Different initial con-
ditions produce these behaviors. The plotted lines are the trajectories of two
agents on the plane, with varying initial conditions.

u̇ =
1

|r1 − r2|
(ṙ1 + ṙ2) · (r2 − r1)

=
1

u
(uv1 cos θ1 + uv2 cos θ2)

= v1 cos θ1 + v2 cos θ2

(18)

v̇1 =
1

|ṙ1|
(r̈1 · ṙ1)

=
1

v1
((1− ṙ1 · ṙ1)ṙ1 · ṙ1 −

1

2
(r1 − r2) · ṙ1)

=
1

v1
((1− v21)v21 −

1

2
uv1 cos θ1)

= (1− v21)v1 −
1

2
v1 cos θ1

(19)

A symmetrical argument can be used to show that:

v̇2 = (1− v22)v2 −
1

2
v2 cos θ2 (20)

The final two derivatives can be calculated implicitly. First, denote the angle
between ṙ1 and ṙ2 as φ. We can see from Figure 3 that φ = π − θ1 − θ2. Then
we have:

cosφ = cos(π − θ1 − θ2) = − cos(θ1 + θ2) = sin θ1 sin θ2 − cos θ1 cos θ2 (21)
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Figure 3: Calculating the angle between ṙ1 and ṙ2.

We can now calculate the final two derivatives implicitly. First, note that:

uv1 cos θ1 = ṙ1 · (r1 − r2) (22)

Differentiating the left hand side yields:

d

dt
(uv1 cos θ1) = (u̇v1 + uv̇1) cos θ1 − uv1θ̇1 sin θ1

= v21 cos2 θ1 + v1v2 cos θ1 cos θ2 + uv1(1− v21) cos θ1 −
1

2
u2 cos2 θ1 − uv1θ̇1 sin θ1

(23)

Differentiating the right hand side:

d

dt
(ṙ1 · (r1 − r2)) = r̈1 · (r1 − r2) + r1 · r1 − r1 · r2

= (1− ṙ1 · ṙ1)ṙ1 · (r1 − r2)− 1

2
(r1 − r2) · (r1 − r2) + r1 · r1 − r1 · r2

= (1− v21)uv1 cos θ1 −
1

2
u2 + v21 + v1v2 cos θ1 cos θ2 − v1v2 sin θ1 sin θ2

(24)

Equating (23) and (24) and canceling:

v21 cos2 θ1 −
1

2
u2 cos2 θ1 − uv1θ̇1 sin θ1 = −1

2
u2 + v21 − v1v2 sin θ1 sin θ2 (25)

Rearranging for θ̇1:

θ̇1 =
1
2u

2 − 1
2u

2 cos2 θ1 − v21 + v21 cos2 θ1 + v1v2 sin θ1 sin θ2

uv1 sin θ1

=
1
2u

2 sin2 θ1 − v21 sin2 θ1 + v1v2 sin θ1 sin θ2

uv1 sin θ1

=

(
u

2v1
− v1
u

)
sin θ1 +

v2
u

sin θ2

(26)

A symmetrical argument shows that:

θ̇2 =

(
u

2v2
− v2
u

)
sin θ2 +

v1
u

sin θ1 (27)
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Equations (18), (19), (20), (26), and (27) give the following system of differ-
ential equations:

u̇ = v1 cos θ1 + v2 cos θ2

v̇1 = (1− v21)v1 −
1

2
v1 cos θ1

v̇2 = (1− v22)v2 −
1

2
v2 cos θ1

θ̇1 =

(
u

2v1
− v1
u

)
sin θ1 +

v2
u

sin θ2

θ̇2 =

(
u

2v2
− v2
u

)
sin θ2 +

v1
u

sin θ1

(28)

The rotating behavior corresponds to the case when the distance between
particles and the center of mass is 1, and therefore u = 2. The speed of both
agents v1 and v2 will be 1. We also expect that the direction of rotation will
be orthogonal to the vector between the two agents, and in opposite directions,
giving us that θ1 and θ2 are both π

2 or both −π2 . This gives us the following
two points: (2, 1, 1, π/2, π/2), and (2, 1, 1,−π/2,−π/2). At these two points,
we linearize the system by calculating the Jacobian matrices:

J(2, 1, 1, π/2, π/2) =


0 0 0 −1 −1
0 −2 0 1 0
0 0 −2 0 1
1
2 − 3

2
1
2 0 0

1
2

1
2 − 3

2 0 0



J(2, 1, 1,−π/2,−π/2) =


0 0 0 1 1
0 −2 0 −1 0
0 0 −2 0 −1
− 1

2
3
2 − 1

2 0 0
− 1

2 − 1
2

3
2 0 0


(29)

We calculated the values of the eigenvalues of these matrices. For both
matrices, the eigenvalues are (−1.544,−1 ± i,−0.228 ± 1.115i). Since all these
eigenvalues are in the negative complex half-plane, local stability follows from
Lyapunov’s indirect method [14].

3.5 Systems with More Agents

We are currently investigating stability of systems with more than two agents.
For a system of N agents, we use the following change of coordinates to describe
the position of the ith agent in system (1):

ui = Distance between the ith agent and the center of mass

vi = Speed of the ith agent

θi = Angle between the ith agent and the positive x-axis

φi = Angle between the vector (ri −R) and the vector ṙi

(30)
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Where ri is the position vector of the ith agent, and R is the center of mass of
the system. This leads to the following system of differential equations:

u̇i = vi cosφi −
1

N

N∑
j=1

vj cos(φj + θj − θi)

v̇i = (1− v2i )vi − ui cosφi

θ̇i =
vi
ui

sinφi −
1

uiN

N∑
j=1

vj sin(φj + θj − θi)

φ̇i = (
ui
vi
− vi
ui

) sinφi +
1

uiN

N∑
j=1

vj sin(φj + θj − θi)

(31)

This system shifts the center of mass onto the origin. It is therefore necessary
to include the constraint that

∑N
i=1(ui cos θi, ui sin θi) = (0, 0). As might be

expected, the manifold created by this constraint is invariant, so we may restrict
ourselves to studying the behavior of the system on this manifold.

We believe that the following conjecture is true:

Conjecture 1. For any integer N > 0, the system (31) of N agents has a

stable manifold at
(
ui = 1, vi = 1, φi = ±π2 ,

∑N
i=1(ui cos θi, ui sin θi) = (0, 0)

)
,

given initial conditions on the invariant manifold
∑N
i=1(ui cos θi, ui sin θi) =

(0, 0).

This would imply that the ring state of the system is locally stable, because
in a neighborhood of the ring state, the speed of each agent converges to 1, the
velocity converges to 1, and the velocity is orthogonal to the speed.

We have shown this using a linearization for 3 agents, but with higher num-
bers of agents, the system has dimensions of neutral stability. For example,
there are many possible configurations in a swarm of five agents: we may per-
turb all agents along the unit circle in a way which maintains the center of mass.
This type of perturbation is pictured in Figure 4.

Figure 4: A perturbation which keeps the center of mass constant in a five-agent
system.

MIDN Carl Kolon, Prof. Kostya Medynets, and Prof. Irina Popovici, all at
USNA, are currently attempting to use center manifold analysis to prove that
this conjecture is indeed true for any number of agents.
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4 Motion on Riemannian Manifolds

We have generalized the concept of a gradient swarm to Riemannian manifolds.
To our knowledge, this has never been done before. So far, we have only observed
the behavior of the system numerically, but the behavior of gradient swarms on
manifolds appears to mimic their behavior in Euclidean space. As is common
in differential geometry, we use Einstein summation notation for our equations.

A Riemannian manifold is a smooth manifold M equipped with an inner
product 〈·, ·〉p (the metric tensor) on the tangent space TpM at every point p.
The inner product varies smoothly along any vector field on M . On a chart of a
Riemannian manifold with coordinates xi, the metric tensor is often represented
as g, such that for two tangent vectors u and v, 〈u,v〉 = giju

ivj .
A geodesic is a locally length-minimizing curve. A geodesic γ satisfies the

geodesic equation [15]:
γ̈a + Γaij γ̇

iγ̇j = 0

in all coordinate directions a, where Γ is the Christoffel symbol of the second
kind, defined as:

Γaij =
1

2
gak(

∂gik
∂xj

+
∂gjk
∂xi

− ∂gij
∂xk

)

An agent on the manifold with position vector x = (x1, x2, . . . , xa) moving
with no external acceleration will follow geodesic paths, so such an agent will
satisfy the following equation of motion:

ẍa + Γaij ẋ
iẋj = 0

The concept of the gradient is different on a Riemannian manifold as well.
For a function f : M → R, and some vector field V on M , we desire that the
gradient have the following property:

(∇f)T gV = dfT (V )

Where df is the directional derivative of f , and T represents the transpose.
Since this is an identity for any V :

(∇f)T g = dfT

Which gives:
gT∇f = df

And since inner products are symmetric:

∇f = g−1df

This gives the following form for the gradient on a Riemannian manifold:

∇f =
∑
k

gik
∂f

∂xk
ei (32)
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4.1 Swarming on Riemannian Manifolds

The original swarm in Euclidean space has equation of motion:

r̈i = f(ṙ)− 1

N

N∑
j=1

∇riU(ri, rj) (33)

To make this swarm suitable for manifolds, we must do two things:

1. We must change the flat representation of the gradient to the Riemannian
manifold representation.

2. We must ensure that, if f and U are everywhere zero, the agent moves
along a geodesic.

To do this, we define a gradient swarm of N agents with positions ri =
(r1i , . . . , r

n
i ) (in curvilinear coordinates) by the following equation of motion:

r̈ai = fa(ṙi)− Γajkṙ
j
i ṙ
k
i −

1

N

N∑
j=1

n∑
k=1

gak
∂

∂rki
U(ri, rj) (34)

Our numerical simulations of this system show that it inherits many familiar
properties of gradient swarms. To replicate the parabolic potential model, we
used the following values of f and U :

fa(ṙ) = (1− gij ṙiṙj)ra

U(ri, rj) = the squared length of the shortest path between ri and rj
(35)

On some Riemannian manifolds (e.g. the sphere and hyperbolic half-plane),
there are closed-form expressions for both f and U . We numerically simulated
the parabolic potential model on these surfaces, and found that the swarms still
formed circular limit cycles (see Figure 5). Our current methods for simulating
the system when there are not closed-form expressions for f and U are too
computationally intensive to use, but we are working on methods which use less
computing power.

4.2 Modifying Limit Cycles

We used the concepts developed with the generalization of gradient swarms
to modify the limit cycles of the nonlinear parabolic potential model. Other
methods to achieve this were considered by Medynets and Schwartz [9]. By
using a constant (flat) matrix as our metric tensor, we can skew the motion of
the agents. In this case, there is also a closed form for the distance between
agents. This allows us to numerically simulate the modified swarms, which have
oval limit cycles rather than circles.

5 Technical Implementation

We are interested in the applications of this research to the motion of swarms
of unmanned vehicles. We have implemented swarm models like the nonlinear

18



(a) Swarm in hyperbolic half-plane (b) Swarm on sphere

Figure 5: Generalized parabolic potential swarms simulated on two different
manifolds.

Figure 6: Modifying the parabolic potential model to produce a swarm with
oval limit cycles.
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parabolic potential model in Wolfram Mathematica. We then designed a pack-
age in ROS, the Robot Operating System, to communicate the desired velocity
(generated by numerically solving the differential equation in Mathematica)
to UAV models in Gazebo, a high-fidelity physics simulator. Figure 7 shows
the simulated robotic swarm in action. We hope to extend our simulations in
Gazebo to demonstrate our results on Riemannian manifolds.

Figure 7: Quadrotors following the limit cycle of the nonlinear parabolic poten-
tial swarm in Gazebo. The agents are controlled by ROS, which is feeds velocity
and position data between Gazebo and Mathematica. Note the similarity to the
limit behavior pictured in Figure 1.
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